电信行业数据分析服务(转)
转自https://www.douban.com/note/516353031/?type=rec&qq-pf-to=pcqq.group
上海天元项目数据分析师事务所,专业为企业编制各类项目报告和提供分析行业数据服务。联系电话:13917778657
1.网络管理和优化。
(1)基础设施建设的优化。如利用数据分析实现基站和热点的选址以及资源的分配。可以通过分析话单和信令中用户的流量在时间周期和位置特征方面的分布,对2G、3G的高流量区域设计4G基站和WLAN热点;同时,还可以对建立评估模型对已有基站的效率和成本进行评估,发现基站建设的资源浪费问题,如某些地区为了完成基站建设指标将基站建设在人际罕至的地方等。
(2)网络运营管理及优化。在网络运营层面,可以通过数据分析网络的流量、流向变化趋势,及时调整资源配置,同时还可以分析网络日志,进行全网络优化,不断提升网络质量和网络利用率。
利用数据分析技术实时采集处理网络信令数据,监控网络状况,识别价值小区和业务热点小区,更精准的指导网络优化,实现网络、应用和用户的智能指配。由于用户群的不同,不同小区对运营商的贡献也不同。运营商可以将小区的数据进行多维度数据综合分析,通过对小区VIP用户分布,收入分布,及相关的分布模型得到不同小区的价值,再和网络质量分析结合起来,两者叠加一起,就有可能发现某个小区价值高,但是网络覆盖需要进一步提升,进而先设定网络优化的优先级,提高投资效率。
2.市场与精准营销。
(1)客户画像。本公司可以基于客户终端信息、位置信息、通话行为、手机上网行为轨迹等丰富的数据,为每个客户打上人口统计学特征、消费行为、上网行为和兴趣爱好标签,并借助数据挖掘技术(如分类、聚类、RFM等)进行客户分群,完善客户的360度画像,帮助运营商深入了解客户行为偏好和需求特征。
(2)关系链研究。通过分析客户通讯录、通话行为、网络社交行以及客户资料等数据,开展交往圈分析。尤其是利用各种联系记录形成社交网络来丰富对用户的洞察,并进一步利用图挖掘的方法来发现各种圈子,发现圈子中的关键人员,以及识别家庭和政企客户;或者分析社交圈子寻找营销机会。如在一个行为同质化圈子里面,如果这个圈子大多数为高流量用户,并在这个圈子中发现异网的用户,我们可以推测该用户也是高流量的情况,便可以通过营销的活动把异网高流量的用户引导到自己的网络上,对其推广4G套餐,提升营销转化率。总之,我们可以利用社交圈子提高营销效率,改进服务,低成本扩大产品的影响力。
(3)精准营销和实时营销。在客户画像的基础上对客户特征的深入理解,建立客户与业务、资费套餐、终端类型、在用网络的精准匹配,并在在推送渠道、推送时机、推送方式上满足客户的需求,实现精准营销。如我们可以利用大数据分析用户的终端偏好和消费能力,预测用户的换机时间尤其是合约机到期时间,并捕捉用户最近的特征事件,从而预测用户购买终端的真正需求,通过短信、呼叫中心、营业厅等多种渠道推送相关的营销信息到用户手中。
(4)个性化推荐。利用客户画像信息、客户终端信息、客户行为习惯偏好等,运营商可以为客户提供定制化的服务,优化产品、流量套餐和定价机制,实现个性化营销和服务,提升客户体验与感知;或者在应用商城实现个性化推荐,在电商平台实现个性化推荐,在社交网络推荐感兴趣的好友。
3.客户关系管理。
(1)客服中心优化。客服中心是运营商和客户接触较为频繁的通道,因此客服中心拥有大量的客户呼叫行为和需求数据。我们可以利用大数据技术可以深入分析客服热线呼入客户的行为特征、选择路径、等候时长,并关联客户历史接触信息、客户套餐消费情况、客户人口统计学特征、客户机型等数据,建立客服热线智能路径模型,预测下次客户呼入的需求、投诉风险以及相应的路径和节点,这样便可缩短客服呼入处理时间,识别投诉风险,有助于提升客服满意度;另外,也可以通过语义分析,对客服热线的问题进行分类,识别热点问题和客户情绪,对于发生量较大且严重的问题,要及时预警相关部门进行优化。
(2)客户关怀与客户生命周期管理。客户生命周期管理包括新客户获取、客户成长、客户成熟、客户衰退和客户离开等五个阶段的管理。在客户获取阶段,我们可以通过算法挖掘和发现高潜客户;在客户成长阶段,通过关联规则等算法进行交叉销售,提升客户人均消费额;在客户成熟期,可以通过大数据方法进行客户分群(RFM、聚类等)并进行精准推荐,同时对不同客户实时忠诚计划;在客户衰退期,需要进行流失预警,提前发现高流失风险客户,并作相应的客户关怀;在客户离开阶段,我们可以通过大数据挖掘高潜回流客户。国内外运营商在客户生命周期管理方面应用的案例都比较多。如SK电讯新成立一家公司SK Planet,专门处理与大数据相关的业务,通过分析用户的使用行为,在用户做出离开决定之前,推出符合用户兴趣的业务,防止用户流失;而T-Mobile通过集成数据综合分析客户流失的原因,在一个季度内将流失率减半。
4.企业运营管理。
(1)业务运营监控分可以基于大数据分析从网络、业务、用户和业务量、业务质量、终端等多个维度为运营商监控管道和客户运营情况。构建灵活可定制的指标模块,构建QoE/KQI/KPI等指标体系,以及异动智能监控体系,从宏观到微观全方位快速准确地掌控运营及异动原因。
(2)经营分析和市场监测。我们可以通过数据分析对业务和市场经营状况进行总结和分析,主要分为经营日报、周报、月报、季报以及专题分析等。过去,这些报告都是分析师来撰写。在大数据时代,这些经营报告和专题分析报告均可以自动化生成网页或者APP形式,通过机器来完成。数据来源则是企业内部的业务和用户数据,以及通过大数据手段采集的外部社交网络数据、技术和市场数据。分析师转变为报告产品经理,制定报告框架、分析和统计维度,剩下的工作交给机器来完成。
5.数据商业化。
(1)对外提供营销洞察和精准广告投放。营销洞察:美国电信运营商Verizon成立了精准营销部门Precision Marketing Division。该部门提供精准营销洞察(Precision Market Insights),提供商业数据分析服务。如在美国,棒球和篮球比赛是商家最为看中的营销场合,此前在超级碗和NBA的比赛中,Verizon针对观众的来源地进行了精确数据分析,球队得以了解观众对赞助商的喜好等;美国电信运营商Sprint则利用大数据为行业客户提供消费者和市场洞察,包括人口特征、行为特征以及季节性分析等方面。
精准广告投放:Verizon的精准营销部门基于营销洞察还提供精准广告投放服务;AT&T提供Alert业务,当用户距离商家很近时,就有可能收到该商家提供的折扣很大的电子优惠券。
(2)基于大数据监测和决策支撑服务。
客流和选址:西班牙电信于2012年10月成立了动态洞察部门DynamicInsights开展大数据业务,为客户提供数据分析打包服务。该部门与市场研究机构GFK进行合作,在英国、巴西推出了首款产品名为智慧足迹(Smart Steps)。智慧足迹基于完全匿名和聚合的移动网络数据,帮助零售商分析顾客来源和各商铺、展位的人流情况以及消费者特征和消费能力,并将洞察结果面向政企客户提供客流分析和零售店选址服务。
公共事业服务:法国最大的运营商法国电信,其通信解决方案部门Orange Business Services承担了法国很多公共服务项目的IT系统建设,比如它承建了一个法国高速公路数据监测项目,每天都会产生几百万条记录,对这些记录进行分析就能为行驶于高速公路上的车辆提供准确及时的信息,有效提高道路通畅率
电信客户投诉时的心理分析:从消费者气质特征分析,可以把消费者的气质分为四大类:胆汁质型、多血质型、粘液质型和忧郁质型。
经研究,大多数重复投诉的电信客户属于胆汁质型和多血质型客户,这两类气质的客户高级神经活动类型属于兴奋型和活泼型,他们的情绪兴奋性高,抑制能力差,特别
容易冲动,因此,他们在投诉时的心理主要有三种:发泄的心理;尊重的心理;补救的心理。
经研究,大多数重复投诉的电信客户属于胆汁质型和多血质型客户,这两类气质的客户高级神经活动类型属于兴奋型和活泼型,他们的情绪兴奋性高,抑制能力差,特别
容易冲动,因此,他们在投诉时的心理主要有三种:发泄的心理;尊重的心理;补救的心理。
我本将心向明月,奈何明月照沟渠,落花有意随流水,流水无心恋落花。