基于elk 实现nginx日志收集与数据分析。

一。背景

      前端web服务器为nginx,采用filebeat + logstash + elasticsearch + granfa 进行数据采集与展示,对客户端ip进行地域统计,监控服务器响应时间等。

 

二。业务整体架构:

      nginx日志落地——》filebear——》logstash——》elasticsearch——》grafna(展示)

三。先上个效果图,慢慢去一步步实现

如上只是简单的几个实用的例子,实际上有多维度的数据之后还可以定制很多需要的内容,如终端ip访问数,国家、地区占比,访问前十的省份,请求方法占比,referer统计,user_agent统计,慢响应时间统计,更有世界地图坐标展示等等,只要有数据就能多维度进行展示。这里提供模板搜索位置大家可以查找参考:https://grafana.com/dashboards

四,准备条件

需要具备如下条件:

1.nginx日志落地,需要主要落地格式,以及各个字段对应的含义。

2.安装filebeat。 filebeat轻量,功能相比较logstash而言比较单一。

3.安装logstash 作为中继服务器。这里需要说明一下的是,起初设计阶段并没有计划使用filebeat,而是直接使用logstash发往elasticsearch,但是当前端机数量增加之后logstash数量也随之增加,同时发往elasticsearch的数量增大,logstash则会抛出由于elasticsearch 限制导致的错误,大家遇到后搜索相应错误的代码即可。为此只采用logstash作为中继。

4.elasticsearch 集群。坑点是index templates的创建会影响新手操作 geoip模块。后文会有。

5.grafana安装,取代传统的kibana,grafana有更友好、美观的展示界面。

 

五。实现过程

1.nginx日志落地配置

  nginx日志格式、字段的内容和顺序都是高度可定制化的,将需要收集的字段内容排列好。定义一个log_format

  定义的形势实际上直接决定了logstash配置中对于字段抽取的模式,这里有两种可用,一种是直接在nginx日志中拼接成json的格式,在logstash中用codec => "json"来转换,

  一种是常规的甚至是默认的分隔符的格式,在logstash中需要用到grok来进行匹配,这个会是相对麻烦些。两种方法各有优点。直接拼接成json的操作比较简单,但是在转码过程中

  会遇到诸如 \x 无法解析的情况。 这里我也遇到过,如有必要后续会详谈。采用grok来匹配的方法相对难操作,但是准确性有提升。我们这里采用的是第一种方法,下面logstash部分

  也会给出采用grok的例子。   nginx日志中日志格式定义如下:

 

log_format access_json   '{"timestamp":"$time_iso8601",'
                        '"hostname":"$hostname",'
                        '"ip":"$remote_addrx",'
                        '"request_method":"$request_method",'
                        '"domain":"XXXX",'
                        '"size":$body_bytes_sent,'
                        '"status": $status,'
                        '"responsetime":$request_time,'
                        '"sum":"1"'
                        '}';

 

2.filebeat配置文件

   关于filebeat更多内容请参考https://www.elastic.co/guide/en/beats/filebeat/current/filebeat-overview.html

   配置文件内容:filebeat.yml  这里应该不会遇到坑。

filebeat.prospectors:
- input_type: log
  paths:
    - /data0/logs/log_json/*.log      #nginx日志路径

output.logstash:
    hosts: ["xxxx.xxxx.xxxx.xxx:12121"]   #logstash 服务器地址

  

3.logstahs配置文件内容:

这里是针对json已经拼接号,直接进行json转码的情况:

需要注意如下:

   1)date模块必须有,否则会造成数据无法回填导致最终的图像出现锯齿状影响稳定性(原因是排列时间并不是日志产生的时间,而是进入logstash的时间)。这里后面的  yyyy-MM-dd'T'HH:mm:ssZZ   需要根据你日志中的日期格式进行匹配匹配规则见:https://www.elastic.co/guide/en/logstash/current/plugins-filters-date.html  

 2)需要说明的是我下面去掉了好多的字段(remove_field),原因是我们数据量大,es服务器有限。 可以根据需要随时调整收集的字段。

 3)  geoip 仅需要指定源ip字段名称即可,fields并不是必须的,我加入的原因还是由于资源有限导致的。

input {
    beats {
    port => 12121
    host => "10.13.0.80"
    codec => "json"
    }
}

filter {
    date {
      match => [ "timestamp", "yyyy-MM-dd'T'HH:mm:ssZZ" ]
      #timezone => "Asia/Shanghai"
      #timezone => "+00:00"
    }
    mutate {
      convert => [ "status","integer" ]
      convert => [ "sum","integer" ]
      convert => [ "size","integer" ]
      remove_field => "message"
      remove_field => "source"
      remove_field => "tags"
      remove_field => "beat"
      remove_field => "offset"
      remove_field => "type"
      remove_field => "@source"
      remove_field => "input_type"
      remove_field => "@version"
      remove_field => "host"
      remove_field => "client"
      #remove_field => "request_method"
      remove_field => "size"
      remove_field => "timestamp"
      #remove_field => "domain"
      #remove_field => "ip"
    }
    geoip {
      source => "ip"
      fields => ["country_name", "city_name", "timezone","region_name","location"]
    }
}

output {
    elasticsearch {
       hosts => ["xxx:19200","xxx:19200","xxx:19200"]
       user => "xxx"
       password => "xxx"
       index => "logstash-suda-alllog-%{+YYYY.MM.dd}"
       flush_size => 10000
       idle_flush_time => 35
    }
}

  下面给出一个采用grok的例子:

       其中match内的内容不用参考我的,需要根据你的字段个数,以及格式来定制。 这里其实是正则表达式。自带了一部分几乎就可以满足所有的需求了无需自己写了,可以参考:https://github.com/elastic/logstash/blob/v1.4.0/patterns/grok-patterns  直接用即可。

input {
  file {
  type => "access"
  path => ["/usr/local/nginx/logs/main/*.log"]
  }
}
 
filter {
  if [type] == "access" {
  if [message] =~ "^#" {
    drop {}
  }
 
 
  grok {
    match => ["message", "\[%{HTTPDATE:log_timestamp}\] %{HOSTNAME:server_name} \"%{WORD:request_method} %{NOTSPACE:query_string} HTTP/%{NUMBER:httpversion}\" \"%{GREEDYDATA:http_user_agent}\" %{NUMBER:status} %{IPORHOST:server_addr} \"%{IPORHOST:remote_addr}\" \"%{NOTSPACE:http_referer}\" %{NUMBER:body_bytes_sent} %{NUMBER:time_taken} %{GREEDYDATA:clf_body_bytes_sent} %{NOTSPACE:uri} %{NUMBER:m_request_time}"]
  }
 
 
  date {
    match => [ "log_timestamp", "dd/MMM/yyyy:mm:ss:SS Z" ]
    timezone => "Etc/UTC"
  }
     
  mutate {
  convert => [ "status","integer" ]
  convert => [ "body_bytes_sent","integer" ]
  convert => [ "m_request_time","float" ]
  }

 在提供一个高级的用法:

 ruby:强大的模块, 可以进行诸如时间转换,单位计算等,多个可以用分号隔开。

  ruby {
  code => "event.set('logdateunix',event.get('@timestamp').to_i);event.set('request_time', event.get('m_request_time') / 1000000 )"  
  }
 
  mutate {
   add_field => {
        "http_host" => "%{server_name}"
        "request_uri" => "%{uri}"
        }

在windowns上使用lgostsh需要注意的是:(win上收集iis的日志,我想正常环境是不会用到的,但是我确实用到了。。。。。。)

path路径一定要采用 linux中的分割符来拼接路径,用win的格式则正则不能实现,大家可以测试下。其他配置则无区别。

input {
  file {
    type => "access"
    path => ["C:/WINDOWS/system32/LogFiles/W3SVC614874788/*.log"]
  }
}

 

4.elasticsearch配置,集群的安装以及启动,调优这里不多说(说不完),需要注意的一个是,geoip location的格式,我这里采用的是index templates来实现的如下:

最重要的是 "location" 定义 (否则geoip_location字段格式有问题,无法拼接成坐标),其他可以根据情况自定:

{
  "order": 0,
  "version": 50001,
  "index_patterns": [
    "suda-*"
  ],
  "settings": {
    "index": {
      "number_of_shards": "5",
      "number_of_replicas": "1",
      "refresh_interval": "200s"
    }
  },
  "mappings": {
    "_default_": {
      "dynamic_templates": [
        {
          "message_field": {
            "path_match": "message",
            "mapping": {
              "norms": false,
              "type": "text"
            },
            "match_mapping_type": "string"
          }
        },
        {
          "string_fields": {
            "mapping": {
              "norms": false,
              "type": "text",
              "fields": {
                "keyword": {
                  "ignore_above": 256,
                  "type": "keyword"
                }
              }
            },
            "match_mapping_type": "string",
            "match": "*"
          }
        }
      ],
      "properties": {
        "@timestamp": {
          "type": "date"
        },
        "geoip": {
          "dynamic": true,
          "properties": {
            "ip": {
              "type": "ip"
            },
            "latitude": {
              "type": "half_float"
            },
            "location": {
              "type": "geo_point"
            },
            "longitude": {
              "type": "half_float"
            }
          }
        },
        "@version": {
          "type": "keyword"
        }
      }
    }
  },
  "aliases": {}
}

  

5   grafana 安装以及模板创建,这个比较简单,安装完直接写语句即可附一个例子如下:

 

这里的变量需要自定义:

 

 通过上面应该能够完成一个完整的收集和展示情况,这里实际上提供了一种可行的方法,并么有太大的具体操作。

 希望多多交流

推荐内容:kibana中文指南(有ibook版本,看着挺方便) 三斗室著

     https://www.elastic.co/cn/  

       https://grafana.com/dashboards

       https://grafana.com/

 

posted @ 2018-05-14 01:13  文成小盆友  阅读(13115)  评论(0编辑  收藏  举报