wenbao与高斯消元
消元
高斯消元
1 typedef double Matrix[maxn][maxn]; 2 void gauss_elimination(Matrix A, int n){ 3 int i, j, k, r; 4 //消元过程 5 for(i = 0; i < n; ++i){ 6 //选一行r并与i行交换 7 r = i; 8 for(j = i+1; j < n; ++j){ 9 if(fabs(A[j][i]) > fabs(A[r][i])) r = j; 10 } 11 if(r != i){ 12 for(j = 0; j <= n; ++j) swap(A[r][j], A[i][j]); 13 } 14 //与i+1~n行进行消元 15 for(k = i+1; k < n; ++k){ 16 for(j = n; j >= i; --j){ //必须逆序枚举 17 A[k][j] -= A[k][i]/A[i][i]*A[i][j]; 18 } 19 } 20 } 21 //回代过程 22 for(i = n-1; i >= 0; --i){ 23 for(j = i+1; j < n; ++j){ 24 A[i][n] -= A[j][n] * A[i][j]; 25 } 26 A[i][n] /= A[i][i]; 27 } 28 }
高斯——约当消元法
运算量比高斯消元略大(将系数矩阵化为对角矩阵),但是代码更简单(少了回调过程)
1 typedef double Matrix[maxn][maxn]; 2 const double eps = 1e-8; 3 void gauss_jordan(Matrix A, int n){ 4 int i, j, k, r; 5 for(i = 0; i < n; i++){ 6 r = i; 7 for(j = i+1; j < n; j++){ 8 if(fabs(A[j][i]) > fabs(A[r][i])) r = j; 9 } 10 if(fabs(A[r][i]) < eps) continue; 11 if(r != i){ 12 for(j = 0; j <= n; j++){ 13 swap(A[r][j], A[i][j]); 14 } 15 } 16 for(k = 0; k < n; k++) if(k != i){ 17 for(j = n; j >= i; j--){ 18 A[k][j] -= A[k][i]/A[i][i] * A[i][j]; 19 } 20 } 21 } 22 }
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&category=20&problem=1769&mosmsg=Submission+received+with+ID+18927455
随机程序
求每个节点的期望执行次数
设 i 的出度为 di 期望执行次数为 xi 对于每个有三个前驱点 a b c 的节点 i 可以列出方程 xi = xa/da + xb/db + xc/dc .
所以矩阵就可以构建出来
1 #include <algorithm> 2 #include <cmath> 3 #include <cstdio> 4 #include <cstring> 5 #include <vector> 6 using namespace std; 7 8 const double eps = 1e-8; 9 const int maxn = 110; 10 typedef double Ma[maxn][maxn]; 11 12 Ma A; 13 int n, d[maxn]; 14 vector<int> p[maxn]; 15 int inf[maxn]; 16 17 18 void gass(Ma A, int n){ 19 int i, j, k, r; 20 for(i = 0; i < n; ++i){ 21 r = i; 22 for(j = i+1; j < n; ++j){ 23 if(fabs(A[j][i]) > fabs(A[r][i])) r = j; 24 } 25 if(fabs(A[r][i]) < eps) continue; 26 if(r != i){ 27 for(j = 0; j <= n; ++j) swap(A[r][j], A[i][j]); 28 } 29 for(k = 0; k < n; ++k) if(k != i){ 30 for(j = n; j >= i; j--) A[k][j] -= A[k][i] / A[i][i] * A[i][j]; 31 } 32 } 33 } 34 35 36 int main(){ 37 int kase = 0; 38 while(scanf("%d", &n) == 1 && n){ 39 memset(d, 0, sizeof(d)); 40 for(int i = 0; i < n; ++i) p[i].clear(); 41 int a, b; 42 while(scanf("%d%d", &a, &b) == 2 && a){ 43 a--, b--; 44 d[a]++; 45 p[b].push_back(a); 46 } 47 memset(A, 0, sizeof(A)); 48 for(int i = 0; i < n; ++i){ 49 A[i][i] = 1; 50 for(int j = 0; j < p[i].size(); j++){ 51 int xx = p[i][j]; 52 A[i][xx] -= 1.0 / d[xx]; 53 } 54 if(i == 0) A[i][n] = 1; 55 } 56 gass(A, n); 57 memset(inf, 0, sizeof(inf)); 58 for(int i = n-1; i >= 0; --i){ 59 if(fabs(A[i][i]) < eps && fabs(A[i][n]) > eps) inf[i] = 1; 60 for(int j = i+1; j < n; j++){ 61 if(fabs(A[i][j]) > eps && inf[j]) inf[i] = 1; 62 } 63 } 64 65 int q, u; 66 scanf("%d", &q); 67 printf("Case #%d:\n", ++kase); 68 while(q--){ 69 scanf("%d", &u); 70 u--; 71 if(inf[u]) printf("infinity\n"); 72 else printf("%.3lf\n", fabs(A[u][u]) < eps ? 0.0 : A[u][n]/A[u][u]); 73 } 74 75 } 76 return 0; 77 }
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
kuangbin大神模板
1 #include<stdio.h> 2 #include<algorithm> 3 #include<iostream> 4 #include<string.h> 5 #include<math.h> 6 using namespace std; 7 8 const int MAXN=50; 9 10 11 12 int a[MAXN][MAXN];//增广矩阵 13 int x[MAXN];//解集 14 bool free_x[MAXN];//标记是否是不确定的变元 15 16 17 18 /* 19 void Debug(void) 20 { 21 int i, j; 22 for (i = 0; i < equ; i++) 23 { 24 for (j = 0; j < var + 1; j++) 25 { 26 cout << a[i][j] << " "; 27 } 28 cout << endl; 29 } 30 cout << endl; 31 } 32 */ 33 34 35 inline int gcd(int a,int b) 36 { 37 int t; 38 while(b!=0) 39 { 40 t=b; 41 b=a%b; 42 a=t; 43 } 44 return a; 45 } 46 inline int lcm(int a,int b) 47 { 48 return a/gcd(a,b)*b;//先除后乘防溢出 49 } 50 51 // 高斯消元法解方程组(Gauss-Jordan elimination).(-2表示有浮点数解,但无整数解, 52 //-1表示无解,0表示唯一解,大于0表示无穷解,并返回自由变元的个数) 53 //有equ个方程,var个变元。增广矩阵行数为equ,分别为0到equ-1,列数为var+1,分别为0到var. 54 int Gauss(int equ,int var) 55 { 56 int i,j,k; 57 int max_r;// 当前这列绝对值最大的行. 58 int col;//当前处理的列 59 int ta,tb; 60 int LCM; 61 int temp; 62 int free_x_num; 63 int free_index; 64 65 for(int i=0;i<=var;i++) 66 { 67 x[i]=0; 68 free_x[i]=true; 69 } 70 71 //转换为阶梯阵. 72 col=0; // 当前处理的列 73 for(k = 0;k < equ && col < var;k++,col++) 74 {// 枚举当前处理的行. 75 // 找到该col列元素绝对值最大的那行与第k行交换.(为了在除法时减小误差) 76 max_r=k; 77 for(i=k+1;i<equ;i++) 78 { 79 if(abs(a[i][col])>abs(a[max_r][col])) max_r=i; 80 } 81 if(max_r!=k) 82 {// 与第k行交换. 83 for(j=k;j<var+1;j++) swap(a[k][j],a[max_r][j]); 84 } 85 if(a[k][col]==0) 86 {// 说明该col列第k行以下全是0了,则处理当前行的下一列. 87 k--; 88 continue; 89 } 90 for(i=k+1;i<equ;i++) 91 {// 枚举要删去的行. 92 if(a[i][col]!=0) 93 { 94 LCM = lcm(abs(a[i][col]),abs(a[k][col])); 95 ta = LCM/abs(a[i][col]); 96 tb = LCM/abs(a[k][col]); 97 if(a[i][col]*a[k][col]<0)tb=-tb;//异号的情况是相加 98 for(j=col;j<var+1;j++) 99 { 100 a[i][j] = a[i][j]*ta-a[k][j]*tb; 101 } 102 } 103 } 104 } 105 106 // Debug(); 107 108 // 1. 无解的情况: 化简的增广阵中存在(0, 0, ..., a)这样的行(a != 0). 109 for (i = k; i < equ; i++) 110 { // 对于无穷解来说,如果要判断哪些是自由变元,那么初等行变换中的交换就会影响,则要记录交换. 111 if (a[i][col] != 0) return -1; 112 } 113 // 2. 无穷解的情况: 在var * (var + 1)的增广阵中出现(0, 0, ..., 0)这样的行,即说明没有形成严格的上三角阵. 114 // 且出现的行数即为自由变元的个数. 115 if (k < var) 116 { 117 // 首先,自由变元有var - k个,即不确定的变元至少有var - k个. 118 for (i = k - 1; i >= 0; i--) 119 { 120 // 第i行一定不会是(0, 0, ..., 0)的情况,因为这样的行是在第k行到第equ行. 121 // 同样,第i行一定不会是(0, 0, ..., a), a != 0的情况,这样的无解的. 122 free_x_num = 0; // 用于判断该行中的不确定的变元的个数,如果超过1个,则无法求解,它们仍然为不确定的变元. 123 for (j = 0; j < var; j++) 124 { 125 if (a[i][j] != 0 && free_x[j]) free_x_num++, free_index = j; 126 } 127 if (free_x_num > 1) continue; // 无法求解出确定的变元. 128 // 说明就只有一个不确定的变元free_index,那么可以求解出该变元,且该变元是确定的. 129 temp = a[i][var]; 130 for (j = 0; j < var; j++) 131 { 132 if (a[i][j] != 0 && j != free_index) temp -= a[i][j] * x[j]; 133 } 134 x[free_index] = temp / a[i][free_index]; // 求出该变元. 135 free_x[free_index] = 0; // 该变元是确定的. 136 } 137 return var - k; // 自由变元有var - k个. 138 } 139 // 3. 唯一解的情况: 在var * (var + 1)的增广阵中形成严格的上三角阵. 140 // 计算出Xn-1, Xn-2 ... X0. 141 for (i = var - 1; i >= 0; i--) 142 { 143 temp = a[i][var]; 144 for (j = i + 1; j < var; j++) 145 { 146 if (a[i][j] != 0) temp -= a[i][j] * x[j]; 147 } 148 if (temp % a[i][i] != 0) return -2; // 说明有浮点数解,但无整数解. 149 x[i] = temp / a[i][i]; 150 } 151 return 0; 152 } 153 int main(void) 154 { 155 freopen("in.txt", "r", stdin); 156 freopen("out.txt","w",stdout); 157 int i, j; 158 int equ,var; 159 while (scanf("%d %d", &equ, &var) != EOF) 160 { 161 memset(a, 0, sizeof(a)); 162 for (i = 0; i < equ; i++) 163 { 164 for (j = 0; j < var + 1; j++) 165 { 166 scanf("%d", &a[i][j]); 167 } 168 } 169 // Debug(); 170 int free_num = Gauss(equ,var); 171 if (free_num == -1) printf("无解!\n"); 172 else if (free_num == -2) printf("有浮点数解,无整数解!\n"); 173 else if (free_num > 0) 174 { 175 printf("无穷多解! 自由变元个数为%d\n", free_num); 176 for (i = 0; i < var; i++) 177 { 178 if (free_x[i]) printf("x%d 是不确定的\n", i + 1); 179 else printf("x%d: %d\n", i + 1, x[i]); 180 } 181 } 182 else 183 { 184 for (i = 0; i < var; i++) 185 { 186 printf("x%d: %d\n", i + 1, x[i]); 187 } 188 } 189 printf("\n"); 190 } 191 return 0; 192 }
----------------------------------------------------------------------------------------------------------------
消元
1 #include<iostream>
2 #include<cstdio>
3 #include<cmath>
4
5 using namespace std;
6
7 typedef __int64 lld;
8
9 lld a[205][205];
10
11 int sign;
12 lld N,MOD;
13 void solved()
14 {
15 lld ans=1;
16 for(int i=0;i<N;i++)//当前行
17 {
18 for(int j=i+1;j<N;j++)//当前之后的每一行,因为每一行的当前第一个数要转化成0(想想线性代数中行列式的计算)
19 {
20 int x=i,y=j;
21 while(a[y][i])//利用gcd的方法,不停地进行辗转相除
22 {
23 lld t=a[x][i]/a[y][i];
24
25 for(int k=i;k<N;k++)
26 a[x][k]=(a[x][k]-a[y][k]*t)%MOD;
27
28 swap(x,y);
29 }
30 if(x!=i)//奇数次交换,则D=-D'整行交换
31 {
32 for(int k=0;k<N;k++)
33 swap(a[i][k],a[x][k]);
34 sign^=1;
35 }
36 }
37 if(a[i][i]==0)//斜对角中有一个0,则结果为0
38 {
39 cout<<0<<endl;
40 return ;
41 }
42
43 else
44 ans=ans*a[i][i]%MOD;
45
46 }
47
48 if(sign!=0)
49 ans*=-1;
50 if(ans<0)
51 ans+=MOD;
52 printf("%I64d\n",ans);
53 }
54 int main()
55 {
56 int t;
57 scanf("%d",&t);
58
59 while(t--)
60 {
61 sign=0;
62 scanf("%I64d%I64d",&N,&MOD);
63 for(int i=0;i<N;i++)
64 for(int j=0;j<N;j++)
65 scanf("%I64d",&a[i][j]);
66 solved();
67 }
68 return 0;
69 }
----------------------------------------------------------------------------------------------------------------
湘潭邀请赛
http://202.197.224.59/OnlineJudge2/index.php/Problem/read/id/1260
A-1 = A*/|A|
1 #include <string.h> 2 #include <iostream> 3 #include <stdio.h> 4 using namespace std; 5 #define ll long long 6 const int Mod = 1e9+7; 7 int n; 8 int a[210][210], b[210][210]; 9 int mul(int x){ 10 int xx = Mod - 2, sum = 1; 11 while(xx){ 12 if(xx&1) sum = 1LL * sum * x % Mod; 13 x = 1LL * x * x % Mod; 14 xx >>= 1; 15 } 16 return sum; 17 } 18 void d(){ 19 int cnt = 1; 20 for(int i = 0; i < n; ++i){ 21 for(int j = 0; j < n; ++j){ 22 b[i][j] = (i == j); 23 } 24 } 25 for(int i = 0; i < n; ++i){ 26 int t = i; 27 for(int j = i; j < n; ++j){ 28 if(!a[j][i]){ 29 t = j; 30 } 31 } 32 if(t != i) cnt *= -1; 33 for(int j = 0; j < n; ++j){ 34 swap(a[i][j], a[t][j]); 35 swap(b[i][j], b[t][j]); 36 } 37 cnt = 1LL * cnt * a[i][i] % Mod; 38 int xx = mul(a[i][i]); //求逆 39 for(int j = 0; j < n; ++j){ 40 a[i][j] = 1LL * a[i][j]*xx%Mod; 41 b[i][j] = 1LL * b[i][j]*xx%Mod; 42 } 43 for(int k = 0; k < n; ++k){ 44 if(k == i) continue; 45 ll tm = a[k][i]; 46 for(int j = 0; j < n; ++j){ 47 a[k][j] = (a[k][j] - 1LL * tm*a[i][j]%Mod + Mod)%Mod; 48 b[k][j] = (b[k][j] - 1LL * tm*b[i][j]%Mod + Mod)%Mod; 49 } 50 } 51 } 52 cnt = (Mod+cnt)%Mod; 53 for(int i = 0; i < n; ++i){ 54 for(int j = 0; j < n; ++j){ 55 b[i][j] = 1LL * b[i][j]*cnt%Mod; 56 } 57 } 58 } 59 int main(){ 60 while(~scanf("%d", &n)){ 61 for(int i = 0; i < n; ++i){ 62 a[0][i] = 1; 63 } 64 for(int i = 1; i < n; ++i){ 65 for(int j = 0; j < n; ++j){ 66 scanf("%d", &a[i][j]); 67 } 68 } 69 d(); 70 for(int i = 0; i < n; ++i){ 71 printf("%d%c", (i&1 ? (Mod-b[i][0])%Mod : b[i][0]), (i == n-1 ? '\n' : ' ')); 72 } 73 } 74 return 0; 75 }
----------------------------------------------------------------------------------------------------------------
https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=27&page=show_problem&problem=2537
乘积是平方数
1 #include <iostream> 2 #include <string.h> 3 using namespace std; 4 #define ll long long 5 const int maxn = 555; 6 int num = 0, n, ma; 7 bool vis[maxn]; 8 int pr[maxn], A[185][105]; 9 void p(){ 10 for(int i = 2; i <= 500; ++i){ 11 if(!vis[i]) pr[num++] = i; 12 for(int j = 0; j < num && i*pr[j] <= 500; ++j){ 13 if(i%pr[j]) vis[i*pr[j]] = true; 14 else{ 15 vis[i*pr[j]] = true; 16 break; 17 } 18 } 19 } 20 } 21 void solve(){ 22 int i = 0, j = 0, k, r, u; 23 while(i < ma && j < n){ 24 r = i; 25 for(k = i; k < ma; ++k){ 26 if(A[k][j]){ 27 r = k; 28 break; 29 } 30 } 31 if(A[r][j]){ 32 if(r != i){ 33 for(k = 0; k <= n; ++k) swap(A[r][k], A[i][k]); 34 } 35 for(k = i+1; k < ma; ++k) if(A[k][j]){ 36 for(u = i; u <= n; ++u){ 37 A[k][u] ^= A[i][u]; 38 } 39 } 40 ++i; 41 } 42 ++j; 43 } 44 //cout<<"****************"<<i<<endl; 45 printf("%lld\n", (1LL << (n-i))-1LL); 46 } 47 int main(){ 48 int t; 49 p(); 50 //cout<<num<<endl; 51 //cout<<pr[0]<<endl; 52 scanf("%d", &t); 53 while(t--){ 54 memset(A, 0, sizeof(A)); 55 scanf("%d", &n); 56 ma = -1; 57 for(int i = 0; i < n; ++i){ 58 ll x; 59 scanf("%lld", &x); 60 for(int j = 0; j < num; ++j){ 61 while(x%pr[j] == 0){ 62 A[j][i] ^= 1, ma = max(ma, j+1), x/=pr[j]; 63 } 64 } 65 } 66 /* 67 for(int i = 0; i < ma; ++i){ 68 for(int j = 0; j < n; ++j){ 69 printf("%d%c", A[i][j], (j == n-1 ? '\n' : ' ')); 70 } 71 } 72 */ 73 solve(); 74 } 75 return 0; 76 }
----------------------------------------------------------------------------------------------------------------
----------------------------------------------------------------------------------------------------------------
----------------------------------------------------------------------------------------------------------------
只有不断学习才能进步!