Spark DataFrame简介(二)

Spark DataFrame基础操作

 

创建SparkSession和SparkContext

1
2
val spark = SparkSession.builder.master("local").getOrCreate()
val sc = spark.sparkContext

 

从数组创建DataFrame

1
spark.range(1000).toDF("number").show()

 

指定Schema创建DataFrame

复制代码
val data = Seq(
  Row("A", 10, 112233),
  Row("B", 20, 223311),
  Row("C", 30, 331122))

val schema = StructType(List(
  StructField("name", StringType),
  StructField("age", IntegerType),
  StructField("phone", IntegerType)))

spark.createDataFrame(sc.makeRDD(data), schema).show()
复制代码

 

 

从JSON文件加载DataFrame

/* data.json
   {"name":"A","age":10,"phone":112233}
   {"name":"B", "age":20,"phone":223311}
   {"name":"C", "age":30,"phone":331122}
 */
spark.read.format("json").load("/Users/tobe/temp2/data.json").show()

 

 

从CSV文件加载DataFrame

/* data.csv
   name,age,phone
   A,10,112233
   B,20,223311
   C,30,331122
 */
spark.read.option("header", true).csv("/Users/tobe/temp2/data.csv").show()

 

 

读取MySQL数据库加载DataFrame

/* data.csv
   name,age,phone
   A,10,112233
   B,20,223311
   C,30,331122
 */
spark.read.option("header", true).csv("/Users/tobe/temp2/data.csv").show()

 

 

RDD转DataFrame

/* data.csv
   name,age,phone
   A,10,112233
   B,20,223311
   C,30,331122
 */
spark.read.option("header", true).csv("/Users/tobe/temp2/data.csv").show()

 

 

创建Timestamp数据

Spark的TimestampType类型与Java的java.sql.Timestamp对应,

/* data.csv
   name,age,phone
   A,10,112233
   B,20,223311
   C,30,331122
 */
spark.read.option("header", true).csv("/Users/tobe/temp2/data.csv").show()

 

 

创建DateType数据

Spark的DateType类型与Java的java.sql.Date对应,

/* data.csv
   name,age,phone
   A,10,112233
   B,20,223311
   C,30,331122
 */
spark.read.option("header", true).csv("/Users/tobe/temp2/data.csv").show()

 

 
posted @   DB乐之者  阅读(455)  评论(0编辑  收藏  举报
编辑推荐:
· 如何编写易于单元测试的代码
· 10年+ .NET Coder 心语,封装的思维:从隐藏、稳定开始理解其本质意义
· .NET Core 中如何实现缓存的预热?
· 从 HTTP 原因短语缺失研究 HTTP/2 和 HTTP/3 的设计差异
· AI与.NET技术实操系列:向量存储与相似性搜索在 .NET 中的实现
阅读排行:
· 周边上新:园子的第一款马克杯温暖上架
· Open-Sora 2.0 重磅开源!
· 分享 3 个 .NET 开源的文件压缩处理库,助力快速实现文件压缩解压功能!
· Ollama——大语言模型本地部署的极速利器
· DeepSeek如何颠覆传统软件测试?测试工程师会被淘汰吗?
点击右上角即可分享
微信分享提示