欧几里得与区域生长算法
【摘自】https://www.cnblogs.com/ironstark/p/5000147.html
欧几里得与区域生长算法
基于欧式距离的分割和基于区域生长的分割本质上都是用区分邻里关系远近来完成的。由于点云数据提供了更高维度的数据,故有很多信息可以提取获得。欧几里得算法使用邻居之间距离作为判定标准,而区域生长算法则利用了法线,曲率,颜色等信息来判断点云是否应该聚成一类。
1.欧几里得算法
算法的原理在PCL相关的教程中已经说的比较清楚了,我不再给出伪代码。我想用一个故事来讲讲这个问题。从前有一个脑筋急转弯,说一个锅里有两粒豆子,如果不用手,要怎么把它们分开。当时的答案是豆子本来就是分开的,又没黏在一起,怎么不叫分开。OK,实际上欧几里德算法就是这个意思。两团点云就像是两粒豆子,只要找到某个合适的度量方式,就有办法把点云和点云分开。区分豆子我们用的方法可以归结于,两个豆子之间的距离小于分子距离,所以它们并没有连在一起。如果两团点云之间最近两点的距离小于单个点云内部点之间的距离,则可以由算法判断其分为两类。假设总点云集合为A,聚类所得点云团为Q
具体的实现方法大致是:
- 找到空间中某点p10,有kdTree找到离他最近的n个点,判断这n个点到p的距离。将距离小于阈值r的点p12,p13,p14....放在类Q里
- 在 Q\p10 里找到一点p12,重复1
- 在 Q\p10,p12 找到找到一点,重复1,找到p22,p23,p24....全部放进Q里
- 当 Q 再也不能有新点加入了,则完成搜索了
按照我的理解,欧拉聚类用一个queue就可以很好的实现(类似二叉树的BFS),试写一个伪代码如下:
1 ClusterType cluster; 2 std::queue<PointType> que; 3 que.push(clouds->at(0)); 4 cluster->push(que.front()); 5 while (!que.empty()) 6 { 7 PointType point = que.front(); 8 std::vector<PointType> points_neighbor = kdtree->search(clouds, point, radius);//搜寻point的临近点 9 for (auto pt : points_neighbor) 10 { 11 que.push(pt); 12 } 13 cluster->push(point); 14 que.pop(); 15 } 16 return cluster;
听起来好像这个算法并没什么用,因为点云总是连成片的,很少有什么东西会浮在空中让你来分。但是如果和前面介绍的内容联系起来就会发现这个算法威力巨大了。比如
- 半径滤波删除离群点
- 采样一致找到桌面
- 抽掉桌面。。。。。
显然,一旦桌面被抽,桌上的物体就自然成了一个个的浮空点云团。就能够直接用欧几里德算法进行分割了。如图所示。
PCL对欧几里德算法进行了很好的封装,其代码如下:
//被分割出来的点云团(标号队列) std::vector<pcl::PointIndices> cluster_indices; //欧式分割器 pcl::EuclideanClusterExtraction<pcl::PointXYZ> ec; ec.setClusterTolerance (0.02); // 2cm ec.setMinClusterSize (100); ec.setMaxClusterSize (25000); //搜索策略树 ec.setSearchMethod (tree); ec.setInputCloud (cloud_filtered); ec.extract (cluster_indices);
2. 区域生长算法
区域生长算法直观感觉上和欧几里德算法相差不大,都是从一个点出发,最终占领整个被分割区域。毛主席说:“星星之火,可以燎原” 就是这个意思。欧几里德算法是通过距离远近,来判断烧到哪儿。区域生长算法则不然,烧到哪儿靠燃料(点)的性质是否类似来决定。对于普通点云,其可由法线、曲率估计算法获得其法线和曲率值。通过法线和曲率来判断某点是否属于该类。其算法可以总结为:
- 种子周围的点和种子相比
- 法线方向是否足够相近
- 曲率是否足够小
- 如果满足2,3则该点可用做种子
- 如果只满足2,则归类而不做种
- 从某个种子出发,其“子种子”不再出现则一类聚集完成
- 类的规模既不能太大也不能太小
显然,上述算法是针对小曲率变化面设计的。尤其适合对连续阶梯平面进行分割:比如SLAM算法所获得的建筑走廊。
PCL对区域生长算法有如下封装:
//一个点云团队列,用于存放聚类结果 std::vector <pcl::PointIndices> clusters; //区域生长分割器 pcl::RegionGrowing<pcl::PointXYZ, pcl::Normal> reg; //输入分割目标 reg.setSearchMethod (tree); reg.setNumberOfNeighbours (30); reg.setInputCloud (cloud); //reg.setIndices (indices); reg.setInputNormals (normals); //设置限制条件及先验知识 reg.setMinClusterSize (50); reg.setMaxClusterSize (1000000); reg.setSmoothnessThreshold (3.0 / 180.0 * M_PI); reg.setCurvatureThreshold (1.0); reg.extract (clusters);
除了普通点云之外,还有一种特殊的点云,成为RGB点云。显而易见,这种点云除了结构信息之外,还存在颜色信息。将物体通过颜色分类,是人类在辨认果实的过程中进化出的能力,颜色信息可以很好的将复杂场景中的特殊物体分割出来。而颜色点云也并不那么遥不可及,Xbox Kinect就可以轻松的捕捉颜色点云。基于颜色的区域生长分割原理上和基于曲率,法线的分割方法是一致的。只不过比较目标换成了颜色,去掉了点云规模上限的限制。可以认为,同一个颜色且挨得近,是一类的可能性很大,不需要上限来限制。所以这种方式比较适合用于室内场景分割。尤其是复杂室内场景,颜色分割可以轻松的将连续的场景点云变成不同的物体。哪怕是高低不平的地面,没法用采样一致分割器抽掉,颜色分割算法同样能完成分割任务。
基于PCL的实现方式如下:
//用于存放点云团的容器 std::vector <pcl::PointIndices> clusters; //颜色分割器 pcl::RegionGrowingRGB<pcl::PointXYZRGB> reg; reg.setInputCloud (cloud); //点云经过了滤波器的预处理,提取了indices reg.setIndices (indices); reg.setSearchMethod (tree); reg.setDistanceThreshold (10); //点与点之间颜色容差 reg.setPointColorThreshold (6); //苹果都是红的,哪怕离散的苹果也应该是一类 reg.setRegionColorThreshold (5); reg.setMinClusterSize (600); reg.extract (clusters);