粒子群算法原理

    粒子群算法即PSO是典型的非线性优化算法,之前对这类智能优化算法(粒子群、遗传、退火、鸟群、鱼群、蚁群、各种群。。。)研究过一段时间,这类算法在我看来有个共同的特点——依靠随机产生“可能解”,在迭代的过程中,通过适用度函数fitness function(或称代价函数cost function)在“优良”的“可能解”附近增加随机量,剔除或者减少“劣质”的“可能解”的影响,如此迭代下去,逼近全局最优解,有点达尔文的“优胜劣汰,适者生存”的意思。这类算法的缺点不言而喻,在一定工况下可能陷入局部最优解无法自拔,当然也有各种改进算法,但是我迄今还没遇到,可能是工况都是比较巧的“单峰”的情况吧。同样,对于PSO算法,基础知识不再赘述,只把自己认为重要的点mark下来。(贴一份开源代码:把原本在lidar坐标系下不水平的地面点云,通过PSO求取一个pitch和roll(代码里是一个alpha和beta)将地面点云3D变换后,变成lidar坐标系下水平的,详见paper

1.PSO_algorithm函数读了几遍后,应该想起来了,整个算法的核心部分就是求取v,,然后用v更新粒子。其中v是所谓的粒子飞行速度,其实就是当前解x与目前的局部(单粒子)最优解personal_best_x和目前的全局(全部粒子)最优解globalbest_x之间的差值error,利用这个error更新当前解x,恨明显就使得x趋向一个“良好”的方向,在趋向的同时(也就是计算v)增加一点随机,保证粒子的多样性,来增加获取最优解的概率。

2.博主在面试的时候,被问到过,在标定lidar的时候,怎么解决pitch和roll的解耦问题的,一时语塞,没说明白。确实,用欧拉角做3D变换的时候,一方面,旋转的顺序不同会导致不同的结果;另一方面,旋转pitch会影响roll,旋转roll会影响pitch。现在总结一下:

  a.首先3D变换时旋转顺序肯定是固定的因为3D变换的代码只有一个,所以本标定lidar问题只有唯一解。

  b.其次,PSO在任何一次迭代中pitch和roll都是同时计算,同时更新的,也就是说两个参数同时求解,不存在先求pitch后求roll一说,那么问题就类似求最高峰(z最大)的解(x,y)的问题了。

3.还被问到过,你怎么验证你的标定精度的,现总结下:人为产生一个已知倾斜角度pitch和roll的地面点云,因为产生的时候,是先水平,后倾斜,倾斜时也是固定的3D变换顺序,所以也是唯一解,将此地面点云输入到算法中,求解pitch和roll。

 1 for(uint32_t i=0;i<ParticleSize;i++)
 2 {
 3   for (uint32_t j=0;j<2;j++)
 4   {
 5     v[i][j]=w*v[i][j]+c1*my_rand()*(personalbest_x[i][j]-x[i][j])+
6 c2*my_rand()*(globalbest_x[j]-x[i][j]); // update the velocity 7 if(v[i][j]>vmax) v[i][j]=vmax; // limit the velocity 8 else if(v[i][j]<-vmax) v[i][j]=-vmax; 9 } 10 x[i][0]=x[i][0]+v[i][0]; // update the position 11 x[i][1]=x[i][1]+v[i][1]; 12 }

下面就是整个应用的代码了

  1 #include "calculate_alpha_beta.h"
  2 
  3 /*==============================================================================
  4 FileName  : my_min
  5 CreatDate : 2017/4/6
  6 Describe  : calculate the min data in an array
  7 Parameter :
  8 Author    : cgb
  9 ==============================================================================*/
 10 void my_min(double personalbest_faval[],uint32_t num,double *globalbest_faval,uint32_t *index)
 11 {
 12     for(uint32_t i=0;i<num;i++)
 13     {
 14         if(personalbest_faval[i]<*globalbest_faval)
 15         {
 16             *globalbest_faval=personalbest_faval[i];
 17             *index=i;
 18         }
 19     }
 20 }
 21 /*==============================================================================
 22 FileName  : my_rand
 23 CreatDate : 2017/4/6
 24 Describe  : produce a random num 0~1
 25 Parameter :
 26 Author    : cgb
 27 ==============================================================================*/
 28 double my_rand(void)
 29 {
 30     static int flag_once=0;
 31     if(0==flag_once)
 32     {
 33         srand((uint32_t)time(NULL)*65535);
 34         flag_once=1;
 35     }
 36     return ((rand()%100)/99.0);
 37 }
 38 /*==============================================================================
 39 FileName  : fit_plane
 40 CreatDate : 2017/4/6
 41 Describe  : least squares fitting plane equation
 42             plane equation: Z=a*X+b*Y+c
 43 Parameter :
 44 Author    : cgb
 45 ==============================================================================*/
 46 double* fit_plane(pointVector points)
 47 {
 48     double X1=0,Y1=0,Z1=0,X2=0,Y2=0,X1Y1=0,X1Z1=0,Y1Z1=0,C,D,E,G,H;
 49     uint64_t N ,point_num=points.size();
 50     static double para[3];
 51     if (point_num<3)
 52     {
 53         para[0]=-8888;
 54         para[1]=-8888;
 55         para[2]=-8888;
 56     cout<<"****   less than 3 points can't fit the plane   ****"<<endl;
 57     }
 58     else
 59     {
 60         for (uint64_t i=0 ;i<point_num;i++)
 61         {
 62             X1=X1+points[i].x;
 63             Y1=Y1+points[i].y;
 64             Z1=Z1+points[i].z;
 65             X2=X2+points[i].x*points[i].x;
 66             Y2=Y2+points[i].y*points[i].y;
 67             X1Y1=X1Y1+points[i].x*points[i].y;
 68             X1Z1=X1Z1+points[i].x*points[i].z;
 69             Y1Z1=Y1Z1+points[i].y*points[i].z;
 70         }
 71 
 72         N=point_num;
 73         C=N*X2-X1*X1;     // X2!=X1*X1 !!!
 74         D=N*X1Y1-X1*Y1;
 75         E=-(N*X1Z1-X1*Z1);
 76         G=N*Y2-Y1*Y1;
 77         H=-(N*Y1Z1-Y1*Z1);
 78 
 79         para[0]=(H*D-E*G)/(C*G-D*D);
 80         para[1]=(H*C-E*D)/(D*D-G*C);
 81         para[2]=(Z1-para[0]*X1-para[1]*Y1)/N;
 82     }
 83     return para;
 84 }
 85 void trans_cloud(CloudPtr_xyzrgb cloud_hdl, CloudPtr_xyzrgb  cloud_veh_hdl, trans_t trans)
 86 {
 87     /* calibrate horizontal plane to vehicle angle */
 88     Eigen::Matrix4f trans_matrix = Eigen::Matrix4f::Identity();
 89     float alpha = trans.alpha * M_PI / 180.f;
 90     float beta =  trans.beta  * M_PI / 180.f;
 91     float gamma = trans.gamma * M_PI / 180.f;
 92     float x_offset = trans.x_offset;
 93     float y_offset = trans.y_offset;
 94     float z_offset = trans.z_offset;
 95 
 96     trans_matrix(0,0) = (float)(cos(beta) * cos(gamma));
 97     trans_matrix(0,1) = (float)(sin(alpha) * sin(beta) * cos(gamma) -
 98                                     cos(alpha) * sin(gamma));
 99     trans_matrix(0,2) = (float)(cos(alpha) * sin(beta) * cos(gamma) +
100                                     sin(alpha) * sin(gamma));
101     trans_matrix(0,3) = (float)x_offset;
102     trans_matrix(1,0) = (float)(cos(beta) * sin(gamma));
103     trans_matrix(1,1) = (float)(sin(alpha) * sin(beta) * sin(gamma) +
104                                     cos(alpha) * cos(gamma));
105     trans_matrix(1,2) = (float)(cos(alpha) * sin(beta) * sin(gamma) -
106                                     sin(alpha) * cos(gamma));
107     trans_matrix(1,3) = (float)y_offset;
108     trans_matrix(2,0) = -(float)sin(beta);
109     trans_matrix(2,1) = (float)(sin(alpha) * cos(beta));
110     trans_matrix(2,2) = (float)(cos(alpha) * cos(beta));
111     trans_matrix(2,3) = (float)z_offset;
112     trans_matrix(3,0) = 0;
113     trans_matrix(3,1) = 0;
114     trans_matrix(3,2) = 0;
115     trans_matrix(3,3) = 1.0;
116     pcl::transformPointCloud(*cloud_hdl, *cloud_veh_hdl, trans_matrix);
117 }
118 /*==============================================================================
119 FileName  : fitness_function
120 CreatDate : 2017/4/6
121 Describe  :
122 Parameter :
123 Author    : cgb
124 ==============================================================================*/
125 double fitness_function(double alpha, double beta, CloudPtr_xyzrgb cloud_in)
126 {
127     CloudPtr_xyzrgb cloud_out( new pcl::PointCloud<pcl::PointXYZRGB>() );
128     double *para,levelness;
129     trans_t trans;
130     trans.alpha=alpha;
131     trans.beta=beta;
132 
133     trans_cloud(cloud_in, cloud_out, trans);
134     para = fit_plane(cloud_out->points);
135     levelness=fabs(para[0])+fabs(para[1]);
136     
137     return levelness;
138 }
139 /*==============================================================================
140 FileName  : PSO_algorithm
141 CreatDate : 2017/4/6
142 Describe  : calibrate lidar pitch & roll angle with PSO algorithm
143 Parameter : Name ----------- Content --------------- Recommend Value
144             E0 ------------- allowed error --------- 0.001
145             MaxNum --------- max num of iteration -- 200
146             narvs ---------- num of x --------------
147             ParticleSize --- size of particle ------ 30
148             c1 ------------- personal study para --- 2
149             c2 ------------- social study para ----- 2
150             w    ----------- weight ---------------- 0.6
151             vmax ----------- max flying vel -------- 0.8
152 Author    : cgb
153 ==============================================================================*/
154 pso_out_t PSO_algorithm(CloudPtr_xyzrgb cloud)
155 {
156     mtime_test(0);
157     uint32_t index,iteration_cnt=0,ParticleSize=50;
158     double MaxNum,c1,c2,vmax,w,E0,x1_range,x2_range,globalbest_faval;
159     double v[ParticleSize][2],x[ParticleSize][2],personalbest_x[ParticleSize][2],globalbest_x[2];
160     double f[ParticleSize],personalbest_faval[ParticleSize];
161     pso_out_t pso_out;
162     
163     //PSO parameter
164     MaxNum       = 200;
165     c1           = 2;
166     c2           = 2;
167     w            = 0.6;
168     vmax         = 0.8;
169     E0           = 0.00000001;
170 
171     x1_range =45;
172     x2_range =45;
173     // init
174     for (uint32_t i=0;i<ParticleSize;i++)
175     {
176         x[i][0]=my_rand()*x1_range*2-x1_range;           // init the position by random
177         x[i][1]=my_rand()*x2_range*2-x2_range;
178         v[i][0]=my_rand()*2;                             // init the velocity by random
179         v[i][1]=my_rand()*2;
180     }
181     // first calculation
182     for (uint32_t i=0;i<ParticleSize;i++)
183     {
184         f[i]=fitness_function(x[i][0],x[i][1],cloud);
185         personalbest_x[i][0]=x[i][0];
186         personalbest_x[i][1]=x[i][1];
187         personalbest_faval[i]=f[i];
188     }
189 
190     globalbest_faval=personalbest_faval[0];        //init the globalbest_faval
191     my_min(personalbest_faval,ParticleSize,&globalbest_faval,&index);
192     globalbest_x[0]=personalbest_x[index][0];           // get the global best val
193     globalbest_x[1]=personalbest_x[index][1];
194 
195     // loop calculation
196     while(iteration_cnt<MaxNum)
197     {
198         for(uint32_t i=0;i<ParticleSize;i++)            // calculate the best val in local
199         {
200             f[i]=fitness_function(x[i][0],x[i][1],cloud);
201             if (f[i]<personalbest_faval[i])
202             {
203                 personalbest_faval[i]=f[i];
204                 personalbest_x[i][0]=x[i][0];
205                 personalbest_x[i][1]=x[i][1];
206             }
207         }
208         my_min(personalbest_faval,ParticleSize,
209                         &globalbest_faval,&index);      // calculate the best val in global
210         globalbest_x[0]=personalbest_x[index][0];       // get the global best val
211         globalbest_x[1]=personalbest_x[index][1];
212 
213         for(uint32_t i=0;i<ParticleSize;i++)
214         {
215              for (uint32_t j=0;j<2;j++)
216              {
217                  v[i][j]=w*v[i][j]+c1*my_rand()*(personalbest_x[i][j]-x[i][j])+c2*my_rand()*
218                          (globalbest_x[j]-x[i][j]);     // update the velocity
219                  if(v[i][j]>vmax) v[i][j]=vmax;         // limit the velocity
220                  else if(v[i][j]<-vmax) v[i][j]=-vmax;
221              }
222              x[i][0]=x[i][0]+v[i][0];                   // update the position
223              x[i][1]=x[i][1]+v[i][1];
224         }
225         if (fabs(globalbest_faval)<E0)
226         {
227           break;
228         }
229         iteration_cnt++;
230     }
231     
232     double *para;
233     CloudPtr_xyzrgb cloud_out( new pcl::PointCloud<pcl::PointXYZRGB>() );
234     trans_t trans;
235     trans.alpha=globalbest_x[0];
236     trans.beta=globalbest_x[1];
237     trans_cloud(cloud, cloud_out, trans);
238     para = fit_plane(cloud_out->points);
239     
240     pso_out.z_offset      = -para[2];
241     pso_out.alpha         = globalbest_x[0];
242     pso_out.beta          = globalbest_x[1];
243     pso_out.levelness     = globalbest_faval;
244     pso_out.iteration_cnt = iteration_cnt;
245     
246     cout<<"\n----------------------- END -----------------------\n"<<endl;
247     cout.precision(5);cout<<setiosflags(ios::showpoint);
248     cout<<"alpha is      : "<<pso_out.alpha<<" deg"<<endl;
249     cout<<"beta is       : "<<pso_out.beta<<" deg"<<endl;
250     cout<<"z_offset is   : "<<pso_out.z_offset<<" m"<<endl;
251     cout<<"levelness     : "<<pso_out.levelness<<endl;
252     cout<<"iteration cnt : "<<pso_out.iteration_cnt<<endl;
253     mtime_test(1);
254     cout<<"\n---------------------------------------------------"<<endl;
255     return pso_out;
256 }
257 /*==============================================================================
258 FileName  : calculate_alpha_beta
259 CreatDate : 2017/4/6
260 Describe  :
261 Parameter : frameID--the PCD file to calculate alpha & beta
262 Author    : cgb
263 ==============================================================================*/
264 void calculate_alpha_beta(uint32_t frameID, scale_t scale)
265 {
266     CloudPtr_xyzrgb cloud_final(new pcl::PointCloud<pcl::PointXYZRGB>());
267     CloudPtr_xyzrgb cloud_raw  (new pcl::PointCloud<pcl::PointXYZRGB>());
268     trans_t trans;//must use the init trans_t value 
269     Viewer viewer;
270     viewer_init(viewer);
271     
272     load_PCD(frameID, cloud_final, cloud_raw, scale ,trans);
273     
274     pso_out_t pso_put=PSO_algorithm(cloud_final);
275     
276     viewer_update(viewer,cloud_final);
277     viewer_waitstop(viewer);
278     
279     uint64_t num_add= plot_plane(cloud_final,255,0,0,30);
280     viewer_update(viewer,cloud_final);
281     viewer_waitstop(viewer);
282     
283     erase_addpoints(cloud_final,num_add);
284     trans.alpha    = pso_put.alpha;
285     trans.beta     = pso_put.beta;
286     trans.z_offset = pso_put.z_offset;
287     trans_cloud(cloud_final,cloud_final,trans);
288     plot_plane(cloud_final,0,255,0,30);
289     viewer_update(viewer,cloud_final);
290     viewer_waitstop(viewer);
291 }
View Code

 

posted @ 2018-01-15 10:30  WellP.C  阅读(4399)  评论(0编辑  收藏  举报