123、TensorFlow的Job
# 如果你在分布式环境中部署TensorFlow # 你或许需要指定job name和task ID # 来将变量放置在参数服务器上 # 将操作放在worker job import tensorflow as tf with tf.device("/job:ps/task:0"): weights_1 = tf.Variable(tf.truncated_normal([784, 100])) biases_1 = tf.Variable(tf.zeroes[100]) with tf.device("/job:ps/task:1"): weights_2 = tf.Variable(tf.truncated_normal([100, 10])) biases_2 = tf.Variable(tf.zeroes([10])) with tf.device("/job:worker"): layer_1 = tf.matmul(train_batch, weights_1) + biases_1 layer_2 = tf.matmul(train_batch, weights_2) + biases_2
【推荐】还在用 ECharts 开发大屏?试试这款永久免费的开源 BI 工具!
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步