118、TensorFlow变量共享(二)

import tensorflow as tf
# 在不同的变量域中调用conv_relu,并且声明我们想创建新的变量
def my_image_filter(input_images):
    with tf.variable_scope("conv1"):
        # Variables created here will be named "conv1/weights" ,"conv1/biases"
        relu1 = conv_relu(input_images, [5, 5, 32, 32], [32])
    with tf.variable_scope("conv2"):
        # Variables created here will be named "conv2/weights" , "conv2/biases"
        return conv_relu(relu1, [5, 5, 32, 32], [32])


# 如果你想分享变量,你有两个选择,第一你可以创建一个有相同名字的变量域,使用reuse=True
with tf.variable_scope("model"):
    output1 = my_image_filter(input1)
with tf.variable_scope("model", reuse=True):    output2 = my_image_filter(input2)

# 你也可以调用scope.reuse_variables()来触发一个重用:
with tf.variable_scope("model") as scope:
    output1 = my_image_filter(input1)
    scope.reuse_variables()
    output2 = my_image_filter(input2)

# 因为解析一个变量域的名字是有危险的
# 通过一个变量来初始化另一个变量也是可行的
with tf.variable_scope("model") as scope:
    output1 = my_image_filter(input1)
with tf.variable_scope(scope, reuse=True):
    output2 = my_image_filter(input2)

 

posted @ 2018-02-17 11:00  香港胖仔  阅读(122)  评论(0编辑  收藏  举报