111、TensorFlow 初始化变量

# 显式的初始化时非常有用的
# 因为它可以让你不用重复进行繁重的初始化工作
# 当你重新从checkpoint文件中加载一个模型的时候
# 当随机初始化变量被配置在分布式的配置文件中
# 为了在开始训练之前一次性初始化变量
# 调用这个方法tf.global_variables_initializer()
# 这个函数返回一个负责初始化所有变量的操作。
# 在这个 tf.GraphKeys.GLOBAL_VARIABLES 集合中初始化所有的变量
# 运行这个操作,初始化所有的变量
import tensorflow as tf
my_variable = tf.get_variable("my_variable", [1, 2, 3])
#当你需要初始化的变量,依赖另一个变量的值的时候
#你最好使用variable.initialized_value() 而不是全局的初始化
v = tf.get_variable("v", shape=(), initializer=tf.zeros_initializer())
w = tf.get_variable("w", initializer=v.initialized_value() + 1)
with tf.Session() as sess:
    sess.run(tf.global_variables_initializer())
    #如果你不需要初始化变量,你可以调用variable's initilizer方法
    sess.run(my_variable.initializer)
    # 你也可以调用report_uninitialized_variables方法来得到哪些变量没有被初始化
    print(sess.run(tf.report_uninitialized_variables()))
    

 

posted @ 2018-02-16 23:11  香港胖仔  阅读(208)  评论(0编辑  收藏  举报