cs224d 作业 problem set1 (二) 简单的情感分析

使用在上一篇博客中训练好的wordvector

在这一节进行情感分析。

因为在上一节中得到的是一个词就是一个向量

所以一句话便是一个矩阵,矩阵的每一列表示一个词向量

情感分析的前提是已知一句话是 (超级消极,比较消极,中立,积极,非常积极)中的一类作为训练集分别用(0,1,2,3,4)进行表示

然后通过对每一句话的矩阵按列求均值,便得到一个维数固定的向量,用这个向量作为该句话的特征向量

然后将这个向量和该句话对应的label输入softmax层进行softmax回归计算。

最后训练得到的模型便是按句子进行情感分析的语言模型(即判断该句话是以上五中情感中的哪一类)

下面的代码是生成句子的特征向量和softmax回归的函数.  q4_softmaxreg.py

'''
Created on 2017年9月18日

@author: weizhen
'''
import numpy as np
import random
from data_utils import *
from q1_softmax import softmax
from q2_gradcheck import gradcheck_naive
from q3_sgd import load_saved_params

def getSentenceFeature(tokens, wordVectors, sentence):
    """
        对上一步训练好的词向量
        对每一个句子中的全体词向量计算平均值作其特征值
        并试图预测所提句子中的情感层次
        超级消极,比较消极,中立,积极,非常积极
        对其分别从0到4进行编码。
        使用SGD来训练一个softmax回归机,
        并通过不断地训练/调试验证来提高回归机的泛化能力
    
        输入:
        tokens:a dictionary that maps words to their indices in the word vector list
        wordVectors: word vectors(each row) for all tokens
        sentence:a list of words in the sentence of interest
    
        输出:
        sentVector:feature vector for the sentence
    """
    sentVector = np.zeros((wordVectors.shape[1],))
    indices = [tokens[word] for word in sentence]
    sentVector = np.mean(wordVectors[indices, :], axis=0)
    return sentVector

def softmaxRegression(features, labels, weights, regularization=0.0, nopredictions=False):
    """Softmax Regression
       完成正则化的softmax回归
       输入:
       features:feature vectors,each row is a feature vector
       labels  :labels corresponding to the feature vectors
       weights :weights of the regressor
       regularization:L2 regularization constant
    
        输出:
        cost:cost of the regressor
        grad:gradient of the regressor cost with respect to its weights
        pred:label predictions of the regressor
    """
    prob = softmax(features.dot(weights))
    if len(features.shape) > 1:
        N = features.shape[0]
    else:
        N = 1
    """
       a vectorized implementation of 1/N * sum(cross_entropy(x_i,y_i))+1/2*|w|^2
    """
    cost = np.sum(-np.log(prob[range(N), labels])) / N
    cost += 0.5 * regularization * np.sum(weights ** 2)
    
    grad = np.array(prob)
    grad[range(N), labels] -= 1.0
    grad = features.T.dot(grad) / N
    grad += regularization * weights
    
    if N > 1:
        pred = np.argmax(prob, axis=1)
    else:
        pred = np.argmax(prob)
    
    if nopredictions:
        return cost, grad
    else:
        return cost, grad, pred

def accuracy(y, yhat):
    """Precision for classifier"""
    assert(y.shape == yhat.shape)
    return np.sum(y == yhat) * 100.0 / y.size

def softmax_wrapper(features, labels, weights, regularization=0.0):
    cost, grad, _ = softmaxRegression(features, labels, weights, regularization)
    return cost, grad

def sanity_check():
    """
       Run python q4_softmaxreg.py
    """
    random.seed(314159)
    np.random.seed(265)
    
    dataset = StanfordSentiment()
    tokens = dataset.tokens()
    nWords = len(tokens)
    
    _, wordVectors0, _ = load_saved_params()
    wordVectors = (wordVectors0[:nWords, :] + wordVectors0[nWords:, :])
    dimVectors = wordVectors.shape[1]
    
    dummy_weights = 0.1 * np.random.randn(dimVectors, 5)
    dummy_features = np.zeros((10, dimVectors))
    dummy_labels = np.zeros((10,), dtype=np.int32)
    for i in range(10):
        words, dummy_labels[i] = dataset.getRandomTrainSentence()
        dummy_features[i, :] = getSentenceFeature(tokens, wordVectors, words)
    print("====Gradient check for softmax regression=========")
    gradcheck_naive(lambda weights:softmaxRegression(dummy_features, dummy_labels, weights, 1.0, nopredictions=True), dummy_weights)
    print("=======Results============")
    print(softmaxRegression(dummy_features, dummy_labels, dummy_weights, 1.0))

if __name__ == "__main__":
    sanity_check()    
    
    

    

 

 

 

 

 

以下的代码是使用SGD(随机梯度下降方法)进行softmax模型回归训练,并且通过使用不同的正则化参数,比较了模型在测试集,训练集上的不同的误差大小。q4_sentiment.py

'''
Created on 2017年9月19日

@author: weizhen
'''
import numpy as np
import matplotlib.pyplot as plt

from data_utils import *
from q3_sgd import load_saved_params, sgd
from q4_softmaxreg import softmaxRegression, getSentenceFeature, accuracy, softmax_wrapper
from data_utils import StanfordSentiment
"""
完成超参数的实现代码,从而获取最佳的惩罚因子
"""
# 尝试不同的正则化系数,选取最好的
REGULARIZATION = [0.0, 0.00001, 0.00003, 0.0001, 0.0003, 0.001, 0.003, 0.01]
# 载入数据集
dataset = StanfordSentiment()
tokens = dataset.tokens()
nWords = len(tokens)

# 载入预训练好的词向量
_, wordVectors0, _ = load_saved_params()
wordVectors = (wordVectors0[:nWords, :] + wordVectors0[nWords:, :])
dimVectors = wordVectors.shape[1]

# 载入训练集
trainset = dataset.getTrainSentences()
nTrain = len(trainset)
trainFeatures = np.zeros((nTrain, dimVectors))
trainLabels = np.zeros((nTrain,), dtype=np.int32)
for i in range(nTrain):
    words, trainLabels[i] = trainset[i]
    trainFeatures[i, :] = getSentenceFeature(tokens, wordVectors, words)
    
# 准备好训练的特征
devset = dataset.getDevSentences()
nDev = len(devset)
devFeatures = np.zeros((nDev, dimVectors))
devLabels = np.zeros((nDev,), dtype=np.int32)
for i in range(nDev):
    words, devLabels[i] = devset[i]
    devFeatures[i, :] = getSentenceFeature(tokens, wordVectors, words)

# 尝试不同的正则化系数
results = []
for regularization in REGULARIZATION:
    random.seed(3141)
    np.random.seed(59265)
    weights = np.random.randn(dimVectors, 5)
    print("Training for reg=%f" % regularization)
    
    # batch optimization
    weights = sgd(lambda weights:softmax_wrapper(trainFeatures, trainLabels, weights, regularization), weights, 3.0, 10000, PRINT_EVERY=100)
    
    # 训练集上测效果
    _, _, pred = softmaxRegression(trainFeatures, trainLabels, weights)
    trainAccuracy = accuracy(trainLabels, pred)
    print("Train accuracy (%%):%f" % trainAccuracy)
    
    # dev集合上看效果
    _, _, pred = softmaxRegression(devFeatures, devLabels, weights)
    devAccuracy = accuracy(devLabels, pred)
    print("Dev accuracy (%%):%f" % devAccuracy)
    
    # 保存结果权重
    results.append({
        "reg":regularization,
        "weights":weights,
        "train":trainAccuracy,
        "dev":devAccuracy
    })
# 输出准确率
print("  ")
print("===Recap===")
print("Reg\t\tTrain\t\tDev")
for result in results:
    print("%E\t%f\t%f" % (result["reg"], result["train"], result["dev"]))

print("   ")

best_dev = 0
for result in results:
    if result["dev"] > best_dev:
        best_dev = result["dev"]
        BEST_REGULARIZATION = result["reg"]
        BEST_WEIGHTS = result["weights"]

# Test your findings on the test set
testset = dataset.getTrainSentences()
nTest = len(testset)
testFeatures = np.zeros((nTest, dimVectors))
testLabels = np.zeros((nTest,), dtype=np.int32)
for i in range(nTest):
    words, testLabels[i] = testset[i]
    testFeatures[i, :] = getSentenceFeature(tokens, wordVectors, words)

_, _, pred = softmaxRegression(testFeatures, testLabels, BEST_WEIGHTS)
print("Best regularization value:%E" % BEST_REGULARIZATION)
print("Test accuracy (%%):%f" % accuracy(testLabels, pred))

# 画出正则化和准确率的关系
plt.plot(REGULARIZATION, [x["train"] for x in results])
plt.plot(REGULARIZATION, [x["dev"] for x in results])
plt.xscale('log')
plt.xlabel("regularization")
plt.ylabel("accuracy")
plt.legend(['train', 'dev'], loc='upper left')
plt.savefig("q4_reg_v_acc.png")
plt.show()





    
    

 

训练过程中输出的log如下所示,感觉这个随机梯度下降速度还是非常快的

Training for reg=0.000000
iter#100,cost=55.80770312357766
iter#200,cost=113.26516427955131
iter#300,cost=170.77662506220236
iter#400,cost=228.2905711144178
iter#500,cost=285.80464483901727
iter#600,cost=343.3187251832418
iter#700,cost=400.83280587095913
C:\Users\weizhen\workspace\Word2vector\q4_softmaxreg.py:58: RuntimeWarning: divide by zero encountered in log
  cost = np.sum(-np.log(prob[range(N), labels])) / N
iter#800,cost=inf
iter#900,cost=inf
iter#1000,cost=inf
iter#1100,cost=inf
iter#1200,cost=inf
iter#1300,cost=inf
iter#1400,cost=inf
iter#1500,cost=inf
iter#1600,cost=inf
iter#1700,cost=inf
iter#1800,cost=inf
iter#1900,cost=inf
iter#2000,cost=inf
iter#2100,cost=inf
iter#2200,cost=inf
iter#2300,cost=inf
iter#2400,cost=inf
iter#2500,cost=inf
iter#2600,cost=inf
iter#2700,cost=inf
iter#2800,cost=inf
iter#2900,cost=inf
iter#3000,cost=inf
iter#3100,cost=inf
iter#3200,cost=inf
iter#3300,cost=inf
iter#3400,cost=inf
iter#3500,cost=inf
iter#3600,cost=inf
iter#3700,cost=inf
iter#3800,cost=inf
iter#3900,cost=inf
iter#4000,cost=inf
iter#4100,cost=inf
iter#4200,cost=inf
iter#4300,cost=inf
iter#4400,cost=inf
iter#4500,cost=inf
iter#4600,cost=inf
iter#4700,cost=inf
iter#4800,cost=inf
iter#4900,cost=inf
iter#5000,cost=inf
iter#5100,cost=inf
iter#5200,cost=inf
iter#5300,cost=inf
iter#5400,cost=inf
iter#5500,cost=inf
iter#5600,cost=inf
iter#5700,cost=inf
iter#5800,cost=inf
iter#5900,cost=inf
iter#6000,cost=inf
iter#6100,cost=inf
iter#6200,cost=inf
iter#6300,cost=inf
iter#6400,cost=inf
iter#6500,cost=inf
iter#6600,cost=inf
iter#6700,cost=inf
iter#6800,cost=inf
iter#6900,cost=inf
iter#7000,cost=inf
iter#7100,cost=inf
iter#7200,cost=inf
iter#7300,cost=inf
iter#7400,cost=inf
iter#7500,cost=inf
iter#7600,cost=inf
iter#7700,cost=inf
iter#7800,cost=inf
iter#7900,cost=inf
iter#8000,cost=inf
iter#8100,cost=inf
iter#8200,cost=inf
iter#8300,cost=inf
iter#8400,cost=inf
iter#8500,cost=inf
iter#8600,cost=inf
iter#8700,cost=inf
iter#8800,cost=inf
iter#8900,cost=inf
iter#9000,cost=inf
iter#9100,cost=inf
iter#9200,cost=inf
iter#9300,cost=inf
iter#9400,cost=inf
iter#9500,cost=inf
iter#9600,cost=inf
iter#9700,cost=inf
iter#9800,cost=inf
iter#9900,cost=inf
iter#10000,cost=inf
Train accuracy (%):13.623596
Dev accuracy (%):13.351499
Training for reg=0.000010
iter#100,cost=55.783274593185524
iter#200,cost=113.1576936342475
iter#300,cost=170.52790886950592
iter#400,cost=227.8417504849143
iter#500,cost=285.0963279497582
iter#600,cost=342.2910221506712
iter#700,cost=399.4253380860588
iter#800,cost=inf
iter#900,cost=inf
iter#1000,cost=inf
iter#1100,cost=inf
iter#1200,cost=inf
iter#1300,cost=inf
iter#1400,cost=inf
iter#1500,cost=inf
iter#1600,cost=inf
iter#1700,cost=inf
iter#1800,cost=inf
iter#1900,cost=inf
iter#2000,cost=inf
iter#2100,cost=inf
iter#2200,cost=inf
iter#2300,cost=inf
iter#2400,cost=inf
iter#2500,cost=inf
iter#2600,cost=inf
iter#2700,cost=inf
iter#2800,cost=inf
iter#2900,cost=inf
iter#3000,cost=inf
iter#3100,cost=inf
iter#3200,cost=inf
iter#3300,cost=inf
iter#3400,cost=inf
iter#3500,cost=inf
iter#3600,cost=inf
iter#3700,cost=inf
iter#3800,cost=inf
iter#3900,cost=inf
iter#4000,cost=inf
iter#4100,cost=inf
iter#4200,cost=inf
iter#4300,cost=inf
iter#4400,cost=inf
iter#4500,cost=inf
iter#4600,cost=inf
iter#4700,cost=inf
iter#4800,cost=inf
iter#4900,cost=inf
iter#5000,cost=inf
iter#5100,cost=inf
iter#5200,cost=inf
iter#5300,cost=inf
iter#5400,cost=inf
iter#5500,cost=inf
iter#5600,cost=inf
iter#5700,cost=inf
iter#5800,cost=inf
iter#5900,cost=inf
iter#6000,cost=inf
iter#6100,cost=inf
iter#6200,cost=inf
iter#6300,cost=inf
iter#6400,cost=inf
iter#6500,cost=inf
iter#6600,cost=inf
iter#6700,cost=inf
iter#6800,cost=inf
iter#6900,cost=inf
iter#7000,cost=inf
iter#7100,cost=inf
iter#7200,cost=inf
iter#7300,cost=inf
iter#7400,cost=inf
iter#7500,cost=inf
iter#7600,cost=inf
iter#7700,cost=inf
iter#7800,cost=inf
iter#7900,cost=inf
iter#8000,cost=inf
iter#8100,cost=inf
iter#8200,cost=inf
iter#8300,cost=inf
iter#8400,cost=inf
iter#8500,cost=inf
iter#8600,cost=inf
iter#8700,cost=inf
iter#8800,cost=inf
iter#8900,cost=inf
iter#9000,cost=inf
iter#9100,cost=inf
iter#9200,cost=inf
iter#9300,cost=inf
iter#9400,cost=inf
iter#9500,cost=inf
iter#9600,cost=inf
iter#9700,cost=inf
iter#9800,cost=inf
iter#9900,cost=inf
iter#10000,cost=inf
Train accuracy (%):13.623596
Dev accuracy (%):13.351499
Training for reg=0.000030
iter#100,cost=55.733908094897714
iter#200,cost=112.93871229583235
iter#300,cost=170.01697204788633
iter#400,cost=226.91242396364854
iter#500,cost=283.61845393137014
iter#600,cost=340.130913646296
iter#700,cost=396.44591922348985
iter#800,cost=inf
iter#900,cost=inf
iter#1000,cost=inf
iter#1100,cost=inf
iter#1200,cost=inf
iter#1300,cost=inf
iter#1400,cost=inf
iter#1500,cost=inf
iter#1600,cost=inf
iter#1700,cost=inf
iter#1800,cost=inf
iter#1900,cost=inf
iter#2000,cost=inf
iter#2100,cost=inf
iter#2200,cost=inf
iter#2300,cost=inf
iter#2400,cost=inf
iter#2500,cost=inf
iter#2600,cost=inf
iter#2700,cost=inf
iter#2800,cost=inf
iter#2900,cost=inf
iter#3000,cost=inf
iter#3100,cost=inf
iter#3200,cost=inf
iter#3300,cost=inf
iter#3400,cost=inf
iter#3500,cost=inf
iter#3600,cost=inf
iter#3700,cost=inf
iter#3800,cost=inf
iter#3900,cost=inf
iter#4000,cost=inf
iter#4100,cost=inf
iter#4200,cost=inf
iter#4300,cost=inf
iter#4400,cost=inf
iter#4500,cost=inf
iter#4600,cost=inf
iter#4700,cost=inf
iter#4800,cost=inf
iter#4900,cost=inf
iter#5000,cost=inf
iter#5100,cost=inf
iter#5200,cost=inf
iter#5300,cost=inf
iter#5400,cost=inf
iter#5500,cost=inf
iter#5600,cost=inf
iter#5700,cost=inf
iter#5800,cost=inf
iter#5900,cost=inf
iter#6000,cost=inf
iter#6100,cost=inf
iter#6200,cost=inf
iter#6300,cost=inf
iter#6400,cost=inf
iter#6500,cost=inf
iter#6600,cost=inf
iter#6700,cost=inf
iter#6800,cost=inf
iter#6900,cost=inf
iter#7000,cost=inf
iter#7100,cost=inf
iter#7200,cost=inf
iter#7300,cost=inf
iter#7400,cost=inf
iter#7500,cost=inf
iter#7600,cost=inf
iter#7700,cost=inf
iter#7800,cost=inf
iter#7900,cost=inf
iter#8000,cost=inf
iter#8100,cost=inf
iter#8200,cost=inf
iter#8300,cost=inf
iter#8400,cost=inf
iter#8500,cost=inf
iter#8600,cost=inf
iter#8700,cost=inf
iter#8800,cost=inf
iter#8900,cost=inf
iter#9000,cost=inf
iter#9100,cost=inf
iter#9200,cost=inf
iter#9300,cost=inf
iter#9400,cost=inf
iter#9500,cost=inf
iter#9600,cost=inf
iter#9700,cost=inf
iter#9800,cost=inf
iter#9900,cost=inf
iter#10000,cost=inf
Train accuracy (%):13.623596
Dev accuracy (%):13.351499
Training for reg=0.000100
iter#100,cost=55.555913404316605
iter#200,cost=112.13207179048013
iter#300,cost=168.09801072210058
iter#400,cost=223.3617199957655
iter#500,cost=277.88605116153644
iter#600,cost=331.6406275348183
iter#700,cost=384.59915494623067
iter#800,cost=436.73898281616846
iter#900,cost=inf
iter#1000,cost=inf
iter#1100,cost=inf
iter#1200,cost=inf
iter#1300,cost=inf
iter#1400,cost=inf
iter#1500,cost=inf
iter#1600,cost=inf
iter#1700,cost=inf
iter#1800,cost=inf
iter#1900,cost=inf
iter#2000,cost=inf
iter#2100,cost=inf
iter#2200,cost=inf
iter#2300,cost=inf
iter#2400,cost=inf
iter#2500,cost=inf
iter#2600,cost=inf
iter#2700,cost=inf
iter#2800,cost=inf
iter#2900,cost=inf
iter#3000,cost=inf
iter#3100,cost=inf
iter#3200,cost=inf
iter#3300,cost=inf
iter#3400,cost=inf
iter#3500,cost=inf
iter#3600,cost=inf
iter#3700,cost=inf
iter#3800,cost=inf
iter#3900,cost=inf
iter#4000,cost=inf
iter#4100,cost=inf
iter#4200,cost=inf
iter#4300,cost=inf
iter#4400,cost=inf
iter#4500,cost=inf
iter#4600,cost=inf
iter#4700,cost=inf
iter#4800,cost=inf
iter#4900,cost=inf
iter#5000,cost=inf
iter#5100,cost=inf
iter#5200,cost=inf
iter#5300,cost=inf
iter#5400,cost=inf
iter#5500,cost=inf
iter#5600,cost=inf
iter#5700,cost=inf
iter#5800,cost=inf
iter#5900,cost=inf
iter#6000,cost=inf
iter#6100,cost=inf
iter#6200,cost=inf
iter#6300,cost=inf
iter#6400,cost=inf
iter#6500,cost=inf
iter#6600,cost=inf
iter#6700,cost=inf
iter#6800,cost=inf
iter#6900,cost=inf
iter#7000,cost=inf
iter#7100,cost=inf
iter#7200,cost=inf
iter#7300,cost=inf
iter#7400,cost=inf
iter#7500,cost=inf
iter#7600,cost=inf
iter#7700,cost=inf
iter#7800,cost=inf
iter#7900,cost=inf
iter#8000,cost=inf
iter#8100,cost=inf
iter#8200,cost=inf
iter#8300,cost=inf
iter#8400,cost=inf
iter#8500,cost=inf
iter#8600,cost=inf
iter#8700,cost=inf
iter#8800,cost=inf
iter#8900,cost=inf
iter#9000,cost=inf
iter#9100,cost=inf
iter#9200,cost=inf
iter#9300,cost=inf
iter#9400,cost=inf
iter#9500,cost=inf
iter#9600,cost=inf
iter#9700,cost=inf
iter#9800,cost=inf
iter#9900,cost=inf
iter#10000,cost=inf
Train accuracy (%):13.600187
Dev accuracy (%):13.169846
Training for reg=0.000300
iter#100,cost=55.00595210314415
iter#200,cost=109.5333104576623
iter#300,cost=161.7381100668071
iter#400,cost=211.38762873096093
iter#500,cost=258.3796618306362
iter#600,cost=302.67623521301323
iter#700,cost=344.2868074645255
iter#800,cost=383.2567327327972
iter#900,cost=419.6581025580854
iter#1000,cost=453.58239168137726
iter#1100,cost=485.1345714574452
iter#1200,cost=inf
iter#1300,cost=inf
iter#1400,cost=inf
iter#1500,cost=inf
iter#1600,cost=inf
iter#1700,cost=inf
iter#1800,cost=inf
iter#1900,cost=inf
iter#2000,cost=inf
iter#2100,cost=inf
iter#2200,cost=inf
iter#2300,cost=inf
iter#2400,cost=inf
iter#2500,cost=inf
iter#2600,cost=inf
iter#2700,cost=inf
iter#2800,cost=inf
iter#2900,cost=inf
iter#3000,cost=inf
iter#3100,cost=inf
iter#3200,cost=inf
iter#3300,cost=inf
iter#3400,cost=inf
iter#3500,cost=inf
iter#3600,cost=inf
iter#3700,cost=inf
iter#3800,cost=inf
iter#3900,cost=inf
iter#4000,cost=inf
iter#4100,cost=inf
iter#4200,cost=inf
iter#4300,cost=inf
iter#4400,cost=inf
iter#4500,cost=inf
iter#4600,cost=inf
iter#4700,cost=inf
iter#4800,cost=inf
iter#4900,cost=inf
iter#5000,cost=inf
iter#5100,cost=inf
iter#5200,cost=inf
iter#5300,cost=inf
iter#5400,cost=inf
iter#5500,cost=inf
iter#5600,cost=inf
iter#5700,cost=inf
iter#5800,cost=inf
iter#5900,cost=inf
iter#6000,cost=inf
iter#6100,cost=inf
iter#6200,cost=inf
iter#6300,cost=inf
iter#6400,cost=inf
iter#6500,cost=inf
iter#6600,cost=inf
iter#6700,cost=inf
iter#6800,cost=inf
iter#6900,cost=inf
iter#7000,cost=inf
iter#7100,cost=inf
iter#7200,cost=inf
iter#7300,cost=inf
iter#7400,cost=inf
iter#7500,cost=inf
iter#7600,cost=inf
iter#7700,cost=inf
iter#7800,cost=inf
iter#7900,cost=inf
iter#8000,cost=inf
iter#8100,cost=inf
iter#8200,cost=inf
iter#8300,cost=inf
iter#8400,cost=inf
iter#8500,cost=inf
iter#8600,cost=inf
iter#8700,cost=inf
iter#8800,cost=inf
iter#8900,cost=inf
iter#9000,cost=inf
iter#9100,cost=inf
iter#9200,cost=inf
iter#9300,cost=inf
iter#9400,cost=inf
iter#9500,cost=inf
iter#9600,cost=inf
iter#9700,cost=inf
iter#9800,cost=inf
iter#9900,cost=inf
iter#10000,cost=inf
Train accuracy (%):26.884363
Dev accuracy (%):25.340599
Training for reg=0.001000
iter#100,cost=52.70927259731105
iter#200,cost=98.50597258376452
iter#300,cost=135.55092745073773
iter#400,cost=164.67768614426865
iter#500,cost=187.1734394014672
iter#600,cost=204.3396827449289
iter#700,cost=217.3297803631474
iter#800,cost=227.10158270618547
iter#900,cost=234.42124979570002
iter#1000,cost=239.88729673052336
iter#1100,cost=243.96001255674346
iter#1200,cost=246.98960876193254
iter#1300,cost=249.24055160501223
iter#1400,cost=250.91149258138643
iter#1500,cost=252.15107535333902
iter#1600,cost=253.07021555249503
iter#1700,cost=253.7515090665275
iter#1800,cost=254.2563716018845
iter#1900,cost=254.63042020679455
iter#2000,cost=254.90751017855177
iter#2100,cost=255.11275282803217
iter#2200,cost=255.2647657128228
iter#2300,cost=255.37734746741998
iter#2400,cost=255.4607226865884
iter#2500,cost=255.5224663178653
iter#2600,cost=255.56818957210155
iter#2700,cost=255.60204860388984
iter#2800,cost=255.62712160606557
iter#2900,cost=255.64568827509464
iter#3000,cost=255.65943687846433
iter#3100,cost=255.66961765483308
iter#3200,cost=255.67715644281037
iter#3300,cost=255.6827388423264
iter#3400,cost=255.6868725463425
iter#3500,cost=255.68993350282864
iter#3600,cost=255.69220010045092
iter#3700,cost=255.69387848443705
iter#3800,cost=255.69512130362006
iter#3900,cost=255.6960415929005
iter#4000,cost=255.69672305330522
iter#4100,cost=255.69722766437994
iter#4200,cost=255.69760132114078
iter#4300,cost=255.69787800820194
iter#4400,cost=255.6980828906762
iter#4500,cost=255.69823460295643
iter#4600,cost=255.69834694353008
iter#4700,cost=255.69843012996608
iter#4800,cost=255.69849172821802
iter#4900,cost=255.69853734075687
iter#5000,cost=255.69857111612546
iter#5100,cost=255.69859612625504
iter#5200,cost=255.69861464586282
iter#5300,cost=255.69862835934086
iter#5400,cost=255.69863851395561
iter#5500,cost=255.6986460332883
iter#5600,cost=255.69865160123553
iter#5700,cost=255.69865572421295
iter#5800,cost=255.6986587772128
iter#5900,cost=255.6986610379111
iter#6000,cost=255.6986627119228
iter#6100,cost=255.69866395150189
iter#6200,cost=255.69866486939068
iter#6300,cost=255.698665549073
iter#6400,cost=255.69866605236703
iter#6500,cost=255.69866642504832
iter#6600,cost=255.69866670101302
iter#6700,cost=255.69866690536037
iter#6800,cost=255.6986670566768
iter#6900,cost=255.698667168724
iter#7000,cost=255.69866725169328
iter#7100,cost=255.69866731313053
iter#7200,cost=255.69866735862394
iter#7300,cost=255.69866739231105
iter#7400,cost=255.69866741725588
iter#7500,cost=255.69866743572723
iter#7600,cost=255.6986674494048
iter#7700,cost=255.69866745953283
iter#7800,cost=255.69866746703244
iter#7900,cost=255.6986674725857
iter#8000,cost=255.6986674766978
iter#8100,cost=255.69866747974302
iter#8200,cost=255.69866748199792
iter#8300,cost=255.69866748366752
iter#8400,cost=255.69866748490375
iter#8500,cost=255.69866748581921
iter#8600,cost=255.69866748649707
iter#8700,cost=255.6986674869992
iter#8800,cost=255.6986674873709
iter#8900,cost=255.69866748764613
iter#9000,cost=255.6986674878499
iter#9100,cost=255.6986674880009
iter#9200,cost=255.69866748811256
iter#9300,cost=255.69866748819533
iter#9400,cost=255.69866748825658
iter#9500,cost=255.69866748830182
iter#9600,cost=255.69866748833562
iter#9700,cost=255.69866748836034
iter#9800,cost=255.69866748837904
iter#9900,cost=255.69866748839206
iter#10000,cost=255.69866748840226
Train accuracy (%):27.083333
Dev accuracy (%):25.340599
Training for reg=0.003000
iter#100,cost=44.87426292034912
iter#200,cost=68.0134662780099
iter#300,cost=78.13883165157826
iter#400,cost=82.36088053197292
iter#500,cost=84.09039670349404
iter#600,cost=84.79396518269795
iter#700,cost=85.07938308037015
iter#800,cost=85.19503952907226
iter#900,cost=85.24188440045062
iter#1000,cost=85.2608547253842
iter#1100,cost=85.26853638958765
iter#1200,cost=85.2716468368632
iter#1300,cost=85.27290629894894
iter#1400,cost=85.27341626964268
iter#1500,cost=85.27362276223595
iter#1600,cost=85.27370637323054
iter#1700,cost=85.27374022817936
iter#1800,cost=85.27375393639349
iter#1900,cost=85.27375948698896
iter#2000,cost=85.27376173448152
iter#2100,cost=85.27376264451414
iter#2200,cost=85.27376301299557
iter#2300,cost=85.27376316219747
iter#2400,cost=85.27376322261087
iter#2500,cost=85.27376324707288
iter#2600,cost=85.27376325697782
iter#2700,cost=85.27376326098837
iter#2800,cost=85.27376326261232
iter#2900,cost=85.27376326326981
iter#3000,cost=85.27376326353613
iter#3100,cost=85.2737632636439
iter#3200,cost=85.27376326368754
iter#3300,cost=85.2737632637052
iter#3400,cost=85.27376326371234
iter#3500,cost=85.27376326371515
iter#3600,cost=85.27376326371623
iter#3700,cost=85.27376326371623
iter#3800,cost=85.27376326371623
iter#3900,cost=85.27376326371623
iter#4000,cost=85.27376326371623
iter#4100,cost=85.27376326371623
iter#4200,cost=85.27376326371623
iter#4300,cost=85.27376326371623
iter#4400,cost=85.27376326371623
iter#4500,cost=85.27376326371623
iter#4600,cost=85.27376326371623
iter#4700,cost=85.27376326371623
iter#4800,cost=85.27376326371623
iter#4900,cost=85.27376326371623
iter#5000,cost=85.27376326371623
iter#5100,cost=85.27376326371623
iter#5200,cost=85.27376326371623
iter#5300,cost=85.27376326371623
iter#5400,cost=85.27376326371623
iter#5500,cost=85.27376326371623
iter#5600,cost=85.27376326371623
iter#5700,cost=85.27376326371623
iter#5800,cost=85.27376326371623
iter#5900,cost=85.27376326371623
iter#6000,cost=85.27376326371623
iter#6100,cost=85.27376326371623
iter#6200,cost=85.27376326371623
iter#6300,cost=85.27376326371623
iter#6400,cost=85.27376326371623
iter#6500,cost=85.27376326371623
iter#6600,cost=85.27376326371623
iter#6700,cost=85.27376326371623
iter#6800,cost=85.27376326371623
iter#6900,cost=85.27376326371623
iter#7000,cost=85.27376326371623
iter#7100,cost=85.27376326371623
iter#7200,cost=85.27376326371623
iter#7300,cost=85.27376326371623
iter#7400,cost=85.27376326371623
iter#7500,cost=85.27376326371623
iter#7600,cost=85.27376326371623
iter#7700,cost=85.27376326371623
iter#7800,cost=85.27376326371623
iter#7900,cost=85.27376326371623
iter#8000,cost=85.27376326371623
iter#8100,cost=85.27376326371623
iter#8200,cost=85.27376326371623
iter#8300,cost=85.27376326371623
iter#8400,cost=85.27376326371623
iter#8500,cost=85.27376326371623
iter#8600,cost=85.27376326371623
iter#8700,cost=85.27376326371623
iter#8800,cost=85.27376326371623
iter#8900,cost=85.27376326371623
iter#9000,cost=85.27376326371623
iter#9100,cost=85.27376326371623
iter#9200,cost=85.27376326371623
iter#9300,cost=85.27376326371623
iter#9400,cost=85.27376326371623
iter#9500,cost=85.27376326371623
iter#9600,cost=85.27376326371623
iter#9700,cost=85.27376326371623
iter#9800,cost=85.27376326371623
iter#9900,cost=85.27376326371623
iter#10000,cost=85.27376326371623
Train accuracy (%):27.083333
Dev accuracy (%):25.340599
Training for reg=0.010000
iter#100,cost=24.75784233489464
iter#200,cost=26.23418217255656
iter#300,cost=26.305377714234208
iter#400,cost=26.308763117953248
iter#500,cost=26.30892399422158
iter#600,cost=26.308931638996803
iter#700,cost=26.308932002276617
iter#800,cost=26.308932019539853
iter#900,cost=26.308932020360217
iter#1000,cost=26.30893202039921
iter#1100,cost=26.30893202040106
iter#1200,cost=26.308932020401073
iter#1300,cost=26.308932020401073
iter#1400,cost=26.308932020401073
iter#1500,cost=26.308932020401073
iter#1600,cost=26.308932020401073
iter#1700,cost=26.308932020401073
iter#1800,cost=26.308932020401073
iter#1900,cost=26.308932020401073
iter#2000,cost=26.308932020401073
iter#2100,cost=26.308932020401073
iter#2200,cost=26.308932020401073
iter#2300,cost=26.308932020401073
iter#2400,cost=26.308932020401073
iter#2500,cost=26.308932020401073
iter#2600,cost=26.308932020401073
iter#2700,cost=26.308932020401073
iter#2800,cost=26.308932020401073
iter#2900,cost=26.308932020401073
iter#3000,cost=26.308932020401073
iter#3100,cost=26.308932020401073
iter#3200,cost=26.308932020401073
iter#3300,cost=26.308932020401073
iter#3400,cost=26.308932020401073
iter#3500,cost=26.308932020401073
iter#3600,cost=26.308932020401073
iter#3700,cost=26.308932020401073
iter#3800,cost=26.308932020401073
iter#3900,cost=26.308932020401073
iter#4000,cost=26.308932020401073
iter#4100,cost=26.308932020401073
iter#4200,cost=26.308932020401073
iter#4300,cost=26.308932020401073
iter#4400,cost=26.308932020401073
iter#4500,cost=26.308932020401073
iter#4600,cost=26.308932020401073
iter#4700,cost=26.308932020401073
iter#4800,cost=26.308932020401073
iter#4900,cost=26.308932020401073
iter#5000,cost=26.308932020401073
iter#5100,cost=26.308932020401073
iter#5200,cost=26.308932020401073
iter#5300,cost=26.308932020401073
iter#5400,cost=26.308932020401073
iter#5500,cost=26.308932020401073
iter#5600,cost=26.308932020401073
iter#5700,cost=26.308932020401073
iter#5800,cost=26.308932020401073
iter#5900,cost=26.308932020401073
iter#6000,cost=26.308932020401073
iter#6100,cost=26.308932020401073
iter#6200,cost=26.308932020401073
iter#6300,cost=26.308932020401073
iter#6400,cost=26.308932020401073
iter#6500,cost=26.308932020401073
iter#6600,cost=26.308932020401073
iter#6700,cost=26.308932020401073
iter#6800,cost=26.308932020401073
iter#6900,cost=26.308932020401073
iter#7000,cost=26.308932020401073
iter#7100,cost=26.308932020401073
iter#7200,cost=26.308932020401073
iter#7300,cost=26.308932020401073
iter#7400,cost=26.308932020401073
iter#7500,cost=26.308932020401073
iter#7600,cost=26.308932020401073
iter#7700,cost=26.308932020401073
iter#7800,cost=26.308932020401073
iter#7900,cost=26.308932020401073
iter#8000,cost=26.308932020401073
iter#8100,cost=26.308932020401073
iter#8200,cost=26.308932020401073
iter#8300,cost=26.308932020401073
iter#8400,cost=26.308932020401073
iter#8500,cost=26.308932020401073
iter#8600,cost=26.308932020401073
iter#8700,cost=26.308932020401073
iter#8800,cost=26.308932020401073
iter#8900,cost=26.308932020401073
iter#9000,cost=26.308932020401073
iter#9100,cost=26.308932020401073
iter#9200,cost=26.308932020401073
iter#9300,cost=26.308932020401073
iter#9400,cost=26.308932020401073
iter#9500,cost=26.308932020401073
iter#9600,cost=26.308932020401073
iter#9700,cost=26.308932020401073
iter#9800,cost=26.308932020401073
iter#9900,cost=26.308932020401073
iter#10000,cost=26.308932020401073
Train accuracy (%):27.083333
Dev accuracy (%):25.340599
  
===Recap===
Reg        Train        Dev
0.000000E+00    13.623596    13.351499
1.000000E-05    13.623596    13.351499
3.000000E-05    13.623596    13.351499
1.000000E-04    13.600187    13.169846
3.000000E-04    26.884363    25.340599
1.000000E-03    27.083333    25.340599
3.000000E-03    27.083333    25.340599
1.000000E-02    27.083333    25.340599
   
Best regularization value:3.000000E-04
Test accuracy (%):26.884363
View Code

下边是不同的正则化参数,输出的不同的误差变化

 

更完整的代码详见:https://github.com/weizhenzhao/cs224d_natural_language_processing

 

posted @ 2017-09-19 21:33  香港胖仔  阅读(731)  评论(0编辑  收藏  举报