48、tensorflow入门二,线性模型的拟合
import tensorflow as tf import numpy as np
#生成2维的100个0-1的随机数 x_data = np.float32(np.random.rand(2,100))
计算内积,x_data一共100个值,每个值都是2维的向量,用[0.1,0.2]和每一个向量计算数量积,然后加起来
x_data=
[[ 0.27559635 0.35930911 0.77030689 0.71818703 0.49122271 0.43190494
0.644674 0.32078174 0.64300877 0.81156862 0.30409896 0.56623858
0.97026539 0.60468578 0.34658566 0.86189109 0.5117926 0.46588144
0.27591956 0.49946061 0.47744861 0.80954593 0.10624354 0.80820572
0.24388497 0.75275064 0.11153043 0.01847375 0.70894343 0.86511648
0.05999189 0.94242656 0.35399687 0.53131646 0.80690706 0.28856653
0.2685678 0.86655128 0.49340782 0.84330899 0.26634833 0.94808429
0.32813659 0.60548925 0.37914801 0.93819922 0.16300483 0.28346273
0.25481561 0.59326059 0.64435166 0.71002674 0.47835174 0.16478723
0.83618289 0.89197201 0.77212745 0.83254766 0.1176443 0.45999372
0.17508474 0.99125117 0.19204263 0.88548642 0.16025347 0.58622926
0.14167576 0.6784007 0.77483946 0.90998834 0.79064935 0.76124579
0.11255023 0.63665706 0.84133714 0.01388079 0.7478959 0.34365693
0.66228282 0.56429321 0.97419363 0.46427366 0.71639329 0.67420006
0.72603422 0.35240087 0.43481046 0.04478104 0.83910578 0.03852031
0.63502115 0.54327303 0.05116724 0.75744271 0.23107423 0.25379685
0.1543453 0.65174055 0.60880935 0.41448417]
[ 0.53852242 0.24170624 0.51843584 0.41295227 0.22256 0.05581184
0.42046902 0.49984431 0.83284378 0.44403863 0.43289256 0.04277489
0.97858369 0.32724616 0.69393569 0.80431139 0.20591183 0.10109164
0.07850602 0.61202133 0.04476574 0.99151891 0.1714984 0.83303201
0.1769124 0.97038633 0.71856993 0.97560126 0.80447757 0.48544171
0.95302963 0.21392477 0.72407377 0.32749009 0.87037027 0.23632777
0.09344739 0.49172315 0.27751547 0.3205907 0.42732051 0.0938397
0.65851027 0.75118226 0.30484736 0.69336241 0.96847987 0.08743072
0.5060789 0.128803 0.12509818 0.77400607 0.99729323 0.25656971
0.28877217 0.26310787 0.22661451 0.38361222 0.64689898 0.26246113
0.41836309 0.96913052 0.34863174 0.26865834 0.96321774 0.02932074
0.51096094 0.93037766 0.3862699 0.77660888 0.50103205 0.35242727
0.96469277 0.71796703 0.90261179 0.9502635 0.2554118 0.41087386
0.13807607 0.10848427 0.27238116 0.81126028 0.35296583 0.5478636
0.35726911 0.54948765 0.3683508 0.57419771 0.28177765 0.80673724
0.14792147 0.5277251 0.17725706 0.5937981 0.86571193 0.09969555
0.92383957 0.95939624 0.76108253 0.30095646]]
y_data =
[ 0.43526412 0.38427216 0.48071786 0.45440916 0.39363427 0.35435286
0.4485612 0.43204704 0.53086963 0.46996459 0.41698841 0.36517884
0.59274328 0.42591781 0.4734457 0.54705139 0.39236163 0.36680647
0.34329316 0.47235033 0.35669801 0.57925838 0.34492403 0.54742697
0.35977098 0.56935233 0.45486703 0.49696763 0.53178986 0.48359999
0.49660512 0.43702761 0.48021444 0.41862966 0.55476476 0.37612221
0.34554626 0.48499976 0.40484388 0.44844904 0.41209894 0.41357637
0.46451571 0.51078538 0.39888427 0.53249241 0.50999646 0.34583242
0.42669734 0.38508666 0.3894548 0.52580389 0.54729382 0.36779267
0.44137272 0.44181877 0.42253565 0.45997721 0.44114423 0.3984916
0.40118109 0.59295122 0.38893061 0.44228031 0.50866889 0.36448708
0.41635976 0.5539156 0.45473793 0.54632061 0.47927135 0.44661003
0.50419358 0.50725911 0.56465607 0.49144078 0.42587195 0.41654046
0.3938435 0.37812617 0.45189559 0.50867942 0.4422325 0.47699273
0.44405724 0.44513762 0.41715121 0.41931765 0.44026611 0.46519948
0.39308641 0.45987232 0.34056814 0.49450389 0.49624981 0.34531879
0.50020244 0.5570533 0.51309744 0.40163971]
y_data = np.dot([0.100,0.200],x_data) + 0.300
b = tf.Variable(tf.zeros([1])) W = tf.Variable(tf.random_uniform([1,2],-1.0,1.0)) y = tf.matmul(W,x_data) + b loss = tf.reduce_mean(tf.square(y - y_data)) optimizer = tf.train.GradientDescentOptimizer(0.5) train = optimizer.minimize(loss) init = tf.global_variables_initializer() sess = tf.Session() sess.run(init) for step in np.arange(0,201): sess.run(train) if step % 20 == 0: print(step,sess.run(W),sess.run(b))
结果如下所示
>>> import testTensorflow
0 [[ 0.61865866 0.54848659]] [-0.35512698]
20 [[ 0.27226886 0.31722128]] [ 0.14856057]
40 [[ 0.15020847 0.23340638]] [ 0.25623968]
60 [[ 0.11460328 0.20955895]] [ 0.28735051]
80 [[ 0.10424114 0.20274341]] [ 0.29634258]
100 [[ 0.10123044 0.20078911]] [ 0.2989423]
120 [[ 0.10035671 0.20022736]] [ 0.29969406]
140 [[ 0.10010336 0.20006558]] [ 0.2999115]
160 [[ 0.10002995 0.20001893]] [ 0.29997438]
180 [[ 0.10000868 0.20000547]] [ 0.29999259]
200 [[ 0.10000249 0.20000155]] [ 0.29999787]
>>>
【推荐】还在用 ECharts 开发大屏?试试这款永久免费的开源 BI 工具!
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 理解Rust引用及其生命周期标识(下)
· 从二进制到误差:逐行拆解C语言浮点运算中的4008175468544之谜
· .NET制作智能桌面机器人:结合BotSharp智能体框架开发语音交互
· 软件产品开发中常见的10个问题及处理方法
· .NET 原生驾驭 AI 新基建实战系列:向量数据库的应用与畅想
· 2025成都.NET开发者Connect圆满结束
· Ollama本地部署大模型总结
· langchain0.3教程:从0到1打造一个智能聊天机器人
· 在 VS Code 中,一键安装 MCP Server!
· 用一种新的分类方法梳理设计模式的脉络