RANSAC算法详解

原帖地址:http://grunt1223.iteye.com/blog/961063

另参考:http://www.cnblogs.com/xrwang/archive/2011/03/09/ransac-1.html
 
给定两个点p1与p2的坐标,确定这两点所构成的直线,要求对于输入的任意点p3,都可以判断它是否在该直线上。初中解析几何知识告诉我们,判断一个点在直线上,只需其与直线上任意两点点斜率都相同即可。实际操作当中,往往会先根据已知的两点算出直线的表达式(点斜式、截距式等等),然后通过向量计算即可方便地判断p3是否在该直线上。 

生产实践中的数据往往会有一定的偏差。例如我们知道两个变量X与Y之间呈线性关系,Y=aX+b,我们想确定参数a与b的具体值。通过实验,可以得到一组X与Y的测试值。虽然理论上两个未知数的方程只需要两组值即可确认,但由于系统误差的原因,任意取两点算出的a与b的值都不尽相同。我们希望的是,最后计算得出的理论模型与测试值的误差最小。大学的高等数学课程中,详细阐述了最小二乘法的思想。通过计算最小均方差关于参数a、b的偏导数为零时的值。事实上,在很多情况下,最小二乘法都是线性回归的代名词。 

遗憾的是,最小二乘法只适合与误差较小的情况。试想一下这种情况,假使需要从一个噪音较大的数据集中提取模型(比方说只有20%的数据时符合模型的)时,最小二乘法就显得力不从心了。例如下图,肉眼可以很轻易地看出一条直线(模式),但算法却找错了。 

RANSAC算法详解

RANSAC算法的输入是一组观测数据(往往含有较大的噪声或无效点),一个用于解释观测数据的参数化模型以及一些可信的参数。RANSAC通过反复选择数据中的一组随机子集来达成目标。被选取的子集被假设为局内点,并用下述方法进行验证: 

  • 有一个模型适应于假设的局内点,即所有的未知参数都能从假设的局内点计算得出。
  • 用1中得到的模型去测试所有的其它数据,如果某个点适用于估计的模型,认为它也是局内点。
  • 如果有足够多的点被归类为假设的局内点,那么估计的模型就足够合理。
  • 然后,用所有假设的局内点去重新估计模型(譬如使用最小二乘法),因为它仅仅被初始的假设局内点估计过。
  • 最后,通过估计局内点与模型的错误率来评估模型。
  • 上述过程被重复执行固定的次数,每次产生的模型要么因为局内点太少而被舍弃,要么因为比现有的模型更好而被选用。


整个过程可参考下图: 

RANSAC算法详解

关于算法的源代码,Ziv Yaniv曾经写一个不错的C++版本,我在关键处增补了注释: 
C代码  收藏代码
  1. #include <math.h>  
  2. #include "LineParamEstimator.h"  
  3.   
  4. LineParamEstimator::LineParamEstimator(double delta) : m_deltaSquared(delta*delta) {}  
  5.   
  6.   
  7. void LineParamEstimator::estimate(std::vector<Point2D *> &data,   
  8.                                                                     std::vector<double> &parameters)  
  9. {  
  10.     parameters.clear();  
  11.     if(data.size()<2)  
  12.         return;  
  13.     double nx = data[1]->y - data[0]->y;  
  14.     double ny = data[0]->x - data[1]->x;// 原始直线的斜率为K,则法线的斜率为-1/k  
  15.     double norm = sqrt(nx*nx + ny*ny);  
  16.       
  17.     parameters.push_back(nx/norm);  
  18.     parameters.push_back(ny/norm);  
  19.     parameters.push_back(data[0]->x);  
  20.     parameters.push_back(data[0]->y);          
  21. }  
  22.   
  23.   
  24. void LineParamEstimator::leastSquaresEstimate(std::vector<Point2D *> &data,   
  25.                                                                                             std::vector<double> &parameters)  
  26. {  
  27.     double meanX, meanY, nx, ny, norm;  
  28.     double covMat11, covMat12, covMat21, covMat22; // The entries of the symmetric covarinace matrix  
  29.     int i, dataSize = data.size();  
  30.   
  31.     parameters.clear();  
  32.     if(data.size()<2)  
  33.         return;  
  34.   
  35.     meanX = meanY = 0.0;  
  36.     covMat11 = covMat12 = covMat21 = covMat22 = 0;  
  37.     for(i=0; i<dataSize; i++) {  
  38.         meanX +=data[i]->x;  
  39.         meanY +=data[i]->y;  
  40.   
  41.         covMat11    +=data[i]->x * data[i]->x;  
  42.         covMat12    +=data[i]->x * data[i]->y;  
  43.         covMat22    +=data[i]->y * data[i]->y;  
  44.     }  
  45.   
  46.     meanX/=dataSize;  
  47.     meanY/=dataSize;  
  48.   
  49.     covMat11 -= dataSize*meanX*meanX;  
  50.         covMat12 -= dataSize*meanX*meanY;  
  51.     covMat22 -= dataSize*meanY*meanY;  
  52.     covMat21 = covMat12;  
  53.   
  54.     if(covMat11<1e-12) {  
  55.         nx = 1.0;  
  56.             ny = 0.0;  
  57.     }  
  58.     else {      //lamda1 is the largest eigen-value of the covariance matrix   
  59.                //and is used to compute the eigne-vector corresponding to the smallest  
  60.                //eigenvalue, which isn't computed explicitly.  
  61.         double lamda1 = (covMat11 + covMat22 + sqrt((covMat11-covMat22)*(covMat11-covMat22) + 4*covMat12*covMat12)) / 2.0;  
  62.         nx = -covMat12;  
  63.         ny = lamda1 - covMat22;  
  64.         norm = sqrt(nx*nx + ny*ny);  
  65.         nx/=norm;  
  66.         ny/=norm;  
  67.     }  
  68.     parameters.push_back(nx);  
  69.     parameters.push_back(ny);  
  70.     parameters.push_back(meanX);  
  71.     parameters.push_back(meanY);  
  72. }  
  73.   
  74.   
  75. bool LineParamEstimator::agree(std::vector<double> &parameters, Point2D &data)  
  76. {  
  77.     double signedDistance = parameters[0]*(data.x-parameters[2]) + parameters[1]*(data.y-parameters[3]);   
  78.     return ((signedDistance*signedDistance) < m_deltaSquared);  
  79. }  


RANSAC寻找匹配的代码如下: 
C代码  收藏代码
  1.   
  2. template<class T, class S>  
  3. double Ransac<T,S>::compute(std::vector<S> &parameters,   
  4.                                                       ParameterEsitmator<T,S> *paramEstimator ,   
  5.                                                     std::vector<T> &data,   
  6.                                                     int numForEstimate)  
  7. {  
  8.     std::vector<T *> leastSquaresEstimateData;  
  9.     int numDataObjects = data.size();  
  10.     int numVotesForBest = -1;  
  11.     int *arr = new int[numForEstimate];// numForEstimate表示拟合模型所需要的最少点数,对本例的直线来说,该值为2  
  12.     short *curVotes = new short[numDataObjects];  //one if data[i] agrees with the current model, otherwise zero  
  13.     short *bestVotes = new short[numDataObjects];  //one if data[i] agrees with the best model, otherwise zero  
  14.       
  15.   
  16.               //there are less data objects than the minimum required for an exact fit  
  17.     if(numDataObjects < numForEstimate)   
  18.         return 0;  
  19.         // 计算所有可能的直线,寻找其中误差最小的解。对于100点的直线拟合来说,大约需要100*99*0.5=4950次运算,复杂度无疑是庞大的。一般采用随机选取子集的方式。  
  20.     computeAllChoices(paramEstimator,data,numForEstimate,  
  21.                                         bestVotes, curVotes, numVotesForBest, 0, data.size(), numForEstimate, 0, arr);  
  22.   
  23.        //compute the least squares estimate using the largest sub set  
  24.     for(int j=0; j<numDataObjects; j++) {  
  25.         if(bestVotes[j])  
  26.             leastSquaresEstimateData.push_back(&(data[j]));  
  27.     }  
  28.         // 对局内点再次用最小二乘法拟合出模型  
  29.     paramEstimator->leastSquaresEstimate(leastSquaresEstimateData,parameters);  
  30.   
  31.     delete [] arr;  
  32.     delete [] bestVotes;  
  33.     delete [] curVotes;   
  34.   
  35.     return (double)leastSquaresEstimateData.size()/(double)numDataObjects;  
  36. }  


在模型确定以及最大迭代次数允许的情况下,RANSAC总是能找到最优解。经过我的实验,对于包含80%误差的数据集,RANSAC的效果远优于直接的最小二乘法。 

RANSAC可以用于哪些场景呢?最著名的莫过于图片的拼接技术。优于镜头的限制,往往需要多张照片才能拍下那种巨幅的风景。在多幅图像合成时,事先会在待合成的图片中提取一些关键的特征点。计算机视觉的研究表明,不同视角下物体往往可以通过一个透视矩(3X3或2X2)阵的变换而得到。RANSAC被用于拟合这个模型的参数(矩阵各行列的值),由此便可识别出不同照片中的同一物体。可参考下图: 

RANSAC算法详解

RANSAC算法详解

RANSAC算法详解

另外,RANSAC还可以用于图像搜索时的纠错与物体识别定位。下图中,有几条直线是SIFT匹配算法的误判,RANSAC有效地将其识别,并将正确的模型(书本)用线框标注出来: 

RANSAC算法详解  

 

posted on 2016-03-09 11:34  呆风语者  阅读(40495)  评论(2编辑  收藏  举报