59、Spark Streaming与Spark SQL结合使用之top3热门商品实时统计案例
一、top3热门商品实时统计案例
1、概述
Spark Streaming最强大的地方在于,可以与Spark Core、Spark SQL整合使用,之前已经通过transform、foreachRDD等算子看到,
如何将DStream中的RDD使用Spark Core执行批处理操作。现在就来看看,如何将DStream中的RDD与Spark SQL结合起来使用。
案例:每隔10秒,统计最近60秒的,每个种类的每个商品的点击次数,然后统计出每个种类top3热门的商品。
2、java案例
package cn.spark.study.streaming; import java.util.ArrayList; import java.util.List; import org.apache.spark.SparkConf; import org.apache.spark.api.java.JavaPairRDD; import org.apache.spark.api.java.JavaRDD; import org.apache.spark.api.java.function.Function; import org.apache.spark.api.java.function.Function2; import org.apache.spark.api.java.function.PairFunction; import org.apache.spark.sql.DataFrame; import org.apache.spark.sql.Row; import org.apache.spark.sql.RowFactory; import org.apache.spark.sql.hive.HiveContext; import org.apache.spark.sql.types.DataTypes; import org.apache.spark.sql.types.StructField; import org.apache.spark.sql.types.StructType; import org.apache.spark.streaming.Durations; import org.apache.spark.streaming.api.java.JavaPairDStream; import org.apache.spark.streaming.api.java.JavaReceiverInputDStream; import org.apache.spark.streaming.api.java.JavaStreamingContext; import scala.Tuple2; /** * 与Spark SQL整合使用,top3热门商品实时统计 * @author Administrator * */ public class Top3HotProduct { public static void main(String[] args) { SparkConf conf = new SparkConf() .setMaster("local[2]") .setAppName("Top3HotProduct"); JavaStreamingContext jssc = new JavaStreamingContext(conf, Durations.seconds(1)); // 首先看一下,输入日志的格式 // leo iphone mobile_phone // 首先,获取输入数据流 // 这里顺带提一句,之前没有讲过,就是说,我们的Spark Streaming的案例为什么都是基于socket的呢? // 因为方便啊。。。 // 其实,企业里面,真正最常用的,都是基于Kafka这种数据源 // 但是我觉得我们的练习,用socket也无妨,比较方便,而且一点也不影响学习 // 因为不同的输入来源的,不同之处,只是在创建输入DStream的那一点点代码 // 所以,核心是在于之后的Spark Streaming的实时计算 // 所以只要我们掌握了各个案例和功能的使用 // 在企业里,切换到Kafka,易如反掌,因为我们之前都详细讲过,而且实验过,实战编码过,将Kafka作为 // 数据源的两种方式了 // 获取输入数据流 JavaReceiverInputDStream<String> productClickLogsDStream = jssc.socketTextStream("spark1", 9999); // 然后,应该是做一个映射,将每个种类的每个商品,映射为(category_product, 1)的这种格式 // 从而在后面可以使用window操作,对窗口中的这种格式的数据,进行reduceByKey操作 // 从而统计出来,一个窗口中的每个种类的每个商品的,点击次数 JavaPairDStream<String, Integer> categoryProductPairsDStream = productClickLogsDStream .mapToPair(new PairFunction<String, String, Integer>() { private static final long serialVersionUID = 1L; @Override public Tuple2<String, Integer> call(String productClickLog) throws Exception { String[] productClickLogSplited = productClickLog.split(" "); return new Tuple2<String, Integer>(productClickLogSplited[2] + "_" + productClickLogSplited[1], 1); } }); // 然后执行window操作 // 到这里,就可以做到,每隔10秒钟,对最近60秒的数据,执行reduceByKey操作 // 计算出来这60秒内,每个种类的每个商品的点击次数 JavaPairDStream<String, Integer> categoryProductCountsDStream = categoryProductPairsDStream.reduceByKeyAndWindow( new Function2<Integer, Integer, Integer>() { private static final long serialVersionUID = 1L; @Override public Integer call(Integer v1, Integer v2) throws Exception { return v1 + v2; } }, Durations.seconds(60), Durations.seconds(10)); // 然后针对60秒内的每个种类的每个商品的点击次数 // foreachRDD,在内部,使用Spark SQL执行top3热门商品的统计 categoryProductCountsDStream.foreachRDD(new Function<JavaPairRDD<String,Integer>, Void>() { private static final long serialVersionUID = 1L; @Override public Void call(JavaPairRDD<String, Integer> categoryProductCountsRDD) throws Exception { // 将该RDD,转换为JavaRDD<Row>的格式 JavaRDD<Row> categoryProductCountRowRDD = categoryProductCountsRDD.map( new Function<Tuple2<String,Integer>, Row>() { private static final long serialVersionUID = 1L; @Override public Row call(Tuple2<String, Integer> categoryProductCount) throws Exception { String category = categoryProductCount._1.split("_")[0]; String product = categoryProductCount._1.split("_")[1]; Integer count = categoryProductCount._2; return RowFactory.create(category, product, count); } }); // 然后,执行DataFrame转换 List<StructField> structFields = new ArrayList<StructField>(); structFields.add(DataTypes.createStructField("category", DataTypes.StringType, true)); structFields.add(DataTypes.createStructField("product", DataTypes.StringType, true)); structFields.add(DataTypes.createStructField("click_count", DataTypes.IntegerType, true)); StructType structType = DataTypes.createStructType(structFields); HiveContext hiveContext = new HiveContext(categoryProductCountsRDD.context()); DataFrame categoryProductCountDF = hiveContext.createDataFrame( categoryProductCountRowRDD, structType); // 将60秒内的每个种类的每个商品的点击次数的数据,注册为一个临时表 categoryProductCountDF.registerTempTable("product_click_log"); // 执行SQL语句,针对临时表,统计出来每个种类下,点击次数排名前3的热门商品 DataFrame top3ProductDF = hiveContext.sql( "SELECT category,product,click_count " + "FROM (" + "SELECT " + "category," + "product," + "click_count," + "row_number() OVER (PARTITION BY category ORDER BY click_count DESC) rank " + "FROM product_click_log" + ") tmp " + "WHERE rank<=3"); // 这里说明一下,其实在企业场景中,可以不是打印的 // 案例说,应该将数据保存到redis缓存、或者是mysql db中 // 然后,应该配合一个J2EE系统,进行数据的展示和查询、图形报表 top3ProductDF.show(); return null; } }); jssc.start(); jssc.awaitTermination(); jssc.close(); } }
3、scala案例
package cn.spark.study.streaming import org.apache.spark.SparkConf import org.apache.spark.streaming.StreamingContext import org.apache.spark.streaming.Seconds import org.apache.spark.sql.Row import org.apache.spark.sql.types.StructType import org.apache.spark.sql.types.StructField import org.apache.spark.sql.types.StringType import org.apache.spark.sql.types.IntegerType import org.apache.spark.sql.hive.HiveContext /** * @author Administrator */ object Top3HotProduct { def main(args: Array[String]): Unit = { val conf = new SparkConf() .setMaster("local[2]") .setAppName("Top3HotProduct") val ssc = new StreamingContext(conf, Seconds(1)) val productClickLogsDStream = ssc.socketTextStream("spark1", 9999) val categoryProductPairsDStream = productClickLogsDStream .map { productClickLog => (productClickLog.split(" ")(2) + "_" + productClickLog.split(" ")(1), 1)} val categoryProductCountsDStream = categoryProductPairsDStream.reduceByKeyAndWindow( (v1: Int, v2: Int) => v1 + v2, Seconds(60), Seconds(10)) categoryProductCountsDStream.foreachRDD(categoryProductCountsRDD => { val categoryProductCountRowRDD = categoryProductCountsRDD.map(tuple => { val category = tuple._1.split("_")(0) val product = tuple._1.split("_")(1) val count = tuple._2 Row(category, product, count) }) val structType = StructType(Array( StructField("category", StringType, true), StructField("product", StringType, true), StructField("click_count", IntegerType, true))) val hiveContext = new HiveContext(categoryProductCountsRDD.context) val categoryProductCountDF = hiveContext.createDataFrame(categoryProductCountRowRDD, structType) categoryProductCountDF.registerTempTable("product_click_log") val top3ProductDF = hiveContext.sql( "SELECT category,product,click_count " + "FROM (" + "SELECT " + "category," + "product," + "click_count," + "row_number() OVER (PARTITION BY category ORDER BY click_count DESC) rank " + "FROM product_click_log" + ") tmp " + "WHERE rank<=3") top3ProductDF.show() }) ssc.start() ssc.awaitTermination() } }