7、transformation和action2
一、transformation开发实战
1、map: 将集合中每个元素乘以2
使用map算子,将集合中的每个元素都乘以2 map算子,是对任何类型的RDD,都可以调用的,在Java中,map算子接收的参数是Function对象 创建的Function对象,一定会让你设置第二个泛型参数,这个泛型类型,就是返回的新元素的类型 同时call()方法的返回类型,也必须与第二个泛型类型同步 在call()方法内部,就可以对原始RDD中的 每一个元素进行各种处理和计算,并返回一个新的元素 所有新的元素,就会组成一个新的RDD ----------java 实现---------- package cn.spark.study.core; import java.util.Arrays; import java.util.List; import org.apache.spark.SparkConf; import org.apache.spark.api.java.JavaRDD; import org.apache.spark.api.java.JavaSparkContext; import org.apache.spark.api.java.function.Function; import org.apache.spark.api.java.function.VoidFunction; /** * transformation实战 * * @author bcqf * */ public class TransformationOperation { public static void main(String[] args) { map(); } /** * map算子案例:将集合中每一个元素都乘以2 */ private static void map() { // 创建SparkConf SparkConf conf = new SparkConf().setAppName("map").setMaster("local"); // 创建JavaSparkcontext JavaSparkContext sc = new JavaSparkContext(conf); // 构造集合 List<Integer> numbers = Arrays.asList(1, 2, 3, 4, 5); // 并行化集合,创建初始RDD JavaRDD<Integer> numberRDD = sc.parallelize(numbers); // 使用map算子,将集合中的每个元素都乘以2 // map算子,是对任何类型的RDD,都可以调用的,在Java中,map算子接收的参数是Function对象 // 创建的Function对象,一定会让你设置第二个泛型参数,这个泛型类型,就是返回的新元素的类型 // 同时call()方法的返回类型,也必须与第二个泛型类型同步 // 在call()方法内部,就可以对原始RDD中的每一个元素进行各种处理和计算,并返回一个新的元素 // 所有新的元素,就会组成一个新的RDD
//public interface Function<T1, R> extends Serializable {
//public R call(T1 v1) throws Exception;
//}
JavaRDD<Integer> multipleNumberRDD = numberRDD.map(new Function<Integer, Integer>() { private static final long serialVersionUID = 1L; //传入ca11()方法的,就是1,2,3,4,5 //返回的就是2,4,6,8,10 @Override public Integer call(Integer v1) throws Exception { // TODO Auto-generated method stub return v1 * 2; } }); //打印新的RDD
//VoidFunction:A function with no return value
//public interface VoidFunction<T> extends Serializable {
//public void call(T t) throws Exception;
//}
multipleNumberRDD.foreach(new VoidFunction<Integer>() { private static final long serialVersionUID = 1L; @Override public void call(Integer t) throws Exception { System.out.println(t); } }); //关闭JavaSparkContext sc.close(); } } ----------scala 实现---------- package cn.spark.study.core import org.apache.spark.SparkConf import org.apache.spark.SparkContext object TransformationOperation { def main(args: Array[String]) { map() } def map() { val conf = new SparkConf().setAppName("map").setMaster("local") val sc = new SparkContext(conf) val numbers = Array(1, 2, 3, 4, 5) val numberRDD = sc.parallelize(numbers, 1) val multipleNumberRDD = numberRDD.map { num => num * 2} multipleNumberRDD.foreach {num => println(num)} } }
2、filter:过滤出集合中的偶数
-------------java实现------------ /** * filter算子案例:过滤出集合中的偶数 */ private static void filter() { // 创建SparkConf SparkConf conf = new SparkConf().setAppName("filter").setMaster("local"); // 创建JavaSparkContext JavaSparkContext sc = new JavaSparkContext(conf); // 模拟集合 List<Integer> numbers = Arrays.asList(1, 2, 3, 4, 5, 6, 7, 8, 9, 10); // 并行化集合,创建初始RDD JavaRDD<Integer> numberRDD = sc.parallelize(numbers); // 对初始RDD执行filter算子,过滤出其中的偶数 // filter算子,传入的也是Function,其他的使用注意点,实际上和map是一样的 // 但是唯一的不同,就是call()方法的返回类型是Boolean // 每一个初始RDD中的元素,都会传入call()方法,此时你可以执行各种自定义的计算逻辑 // 来判断这个元素是否是你想要的 // 如果你想在新的RDD中保留这个元素,那么就返回true,否则,不想保留这个元素,返回false JavaRDD<Integer> evenNumberRDD = numberRDD.filter(new Function<Integer, Boolean>() { private static final long serialVersionUID = 1L; @Override public Boolean call(Integer v1) throws Exception { return v1 % 2 == 0; } }); // 打印新的RDD evenNumberRDD.foreach(new VoidFunction<Integer>() { private static final long serialVersionUID = 1L; @Override public void call(Integer t) throws Exception { System.out.println(t); } }); // 关闭JavaSparkContext sc.close(); } //结果
2
4
6
8
10
-------------scala实现------------ def filter() { val conf = new SparkConf().setAppName("filter").setMaster("local") val sc = new SparkContext(conf) val numbers = Array(1, 2, 3, 4, 5, 6, 7, 8, 9, 10) val numberRDD = sc.parallelize(numbers, 1) val evenNumberRDD = numberRDD.filter { num => num % 2 == 0 } evenNumberRDD.foreach { num => println(num)} }
3、flatMap:将行拆分为单词
----------java实现----------- private static void flatMap() { // 创建SparkConf SparkConf conf = new SparkConf().setAppName("flatMap").setMaster("local"); // 创建JavaSparkContext JavaSparkContext sc = new JavaSparkContext(conf); //构造集合 List<String> lineList = Arrays.asList("hello you", "hello me", "hello word"); // 并行化集合,创建RDD JavaRDD<String> lines = sc.parallelize(lineList); // 对RDD执行flatMap算子,将每一行文本,拆分为多个单词 // flatMap算子,在Java中,接收的参数是FlatMapFunction // 我们需要自己定义FlatMapFunction的第一个泛型类型,即,代表了返回的新元素的类型 // call()方法,返回的类型,不是U,而是Iterable<U>,这里的U也与第二个泛型类型相同 // flatMap其实就是,接收原始RDD中的每个元素,并进行各种逻辑的计算和处理,返回可以返回多个元素 // 多个元素,即封装在Iterable集合中,可以使用ArrayList等集合 // 新的RDD中,即封装了所有的新元素,也就是说,新的RDD大小一定是大于等于原始RDD的大小
// 从每个输入记录返回零个或多个输出记录的函数
//public interface FlatMapFunction<T, R> extends Serializable {
//public Iterable<R> call(T t) throws Exception;
//}
JavaRDD<String> words = lines.flatMap(new FlatMapFunction<String, String>() { private static final long serialVersionUID = 1L; @Override public Iterable<String> call(String t) throws Exception { return Arrays.asList(t.split(" ")); } }); // 打印新的RDD words.foreach(new VoidFunction<String>() { private static final long serialVersionUID = 1L; @Override public void call(String t) throws Exception { System.out.println(t); } }); // 关闭JavaSparkContext sc.close(); } //结果
hello
you
hello
me
hello
word
-----------scala实现------------ def flatMap() { val conf = new SparkConf().setAppName("flatMap").setMaster("local") val sc = new SparkContext(conf) val lineArray = Array("hello you", "hello me", "hello word") val lines = sc.parallelize(lineArray, 1) val words = lines.flatMap {line => line.split(" ")} words.foreach { word => println(word)} }
4、groupByKey:将每个班级的成绩进行分组
---------java实现--------- private static void groupByKey() { //创建SparkConf SparkConf conf = new SparkConf().setAppName("groupByKey").setMaster("local"); //创建JavaSparkContext JavaSparkContext sc = new JavaSparkContext(conf); //模拟集合 List<Tuple2<String, Integer>> scoreList = Arrays.asList( new Tuple2<String, Integer>("class1", 80), new Tuple2<String, Integer>("class2", 75), new Tuple2<String, Integer>("class1", 90), new Tuple2<String, Integer>("class2", 65)); //并行化集合 JavaPairRDD<String, Integer> score = sc.parallelizePairs(scoreList); //针对scores RDD,执行groupByKey算子,对每个班级的成绩进行分组 JavaPairRDD<String, Iterable<Integer>> groupedScores = score.groupByKey(); groupedScores.foreach(new VoidFunction<Tuple2<String,Iterable<Integer>>>() { private static final long serialVersionUID = 1L; @Override public void call(Tuple2<String, Iterable<Integer>> t) throws Exception { System.out.println("class: " + t._1); Iterator<Integer> ite = t._2.iterator(); while(ite.hasNext()) { System.out.println(ite.next()); } System.out.println("======================"); } }); //关闭JavaSparkContext sc.close(); }
//结果
class: class1
80
90
======================
class: class2
75
65
======================
---------scala实现--------- def groupByKey() { val conf = new SparkConf().setAppName("groupByKey").setMaster("local") val sc = new SparkContext(conf) val scoreList = Array(Tuple2("class1", 80), Tuple2("class2", 75), Tuple2("class1", 90), Tuple2("class2", 60)) val scores = sc.parallelize(scoreList, 1) val groupedScores = scores.groupByKey() groupedScores.foreach(score => { println(score._1); score._2.foreach { singleScore => println(singleScore)}; println("==================") }) }
5、reduceByKey:统计每个班级的总分
--------java实现--------- private static void reduceByKey() { //创建SparkConf SparkConf conf = new SparkConf().setAppName("reduceByKey").setMaster("local"); //创建JavaSparkContext JavaSparkContext sc = new JavaSparkContext(conf); //模拟集合 List<Tuple2<String, Integer>> scoreList = Arrays.asList( new Tuple2<String, Integer>("class1", 80), new Tuple2<String, Integer>("class2", 75), new Tuple2<String, Integer>("class1", 90), new Tuple2<String, Integer>("class2", 65)); //并行化集合 JavaPairRDD<String, Integer> scores = sc.parallelizePairs(scoreList); // 针对scoreRDD,执行reduceByKey算子 // reduceByKey,接收的参数是Function2类型,它有三个泛型参数,实际上代表了三个值 // 第一个泛型类型和第二个泛型类型,代表了原始RDD中的元素的value的类型 // 因此对每个key进行reduce,都会依次将第一个、第二个value传入,将返回的值再与第三个value传入 // 因此此处,会自动定义两个类型参数类型,代表call()方法的两个传入参数的类型 // 第三个类型参数,代表了每次reduce操作返回的值的类型,默认也是与原始RDD的value类型相同的 // reduceByKey算子返回的RDD,还是JavaPairRDD<Key,Value>
//一个双参数函数,接收类型为T1和T2的参数,并返回一个R
//public interface Function2<T1, T2, R> extends Serializable {
//public R call(T1 v1, T2 v2) throws Exception;
//}
JavaPairRDD<String, Integer> totalScores = scores.reduceByKey(new Function2<Integer, Integer, Integer>() { private static final long serialVersionUID = 1L; //对每个key,都会将其value,依次传入ca11方法 //从而聚合出每个key对应的一个value //然后,将每个key对应的一个value,组合成一个Tuple2,作为新RDD的元素 @Override public Integer call(Integer v1, Integer v2) throws Exception { return v1 + v2; } }); // 打印totalScores RDD totalScores.foreach(new VoidFunction<Tuple2<String,Integer>>() { private static final long serialVersionUID = 1L; @Override public void call(Tuple2<String, Integer> t) throws Exception { System.out.println(t._1 + ": " + t._2); } }); //关闭JavaSparkContext sc.close(); } //结果
class1: 170
class2: 140
--------scala实现--------- def reduceByKey() { val conf = new SparkConf().setAppName("groupByKey").setMaster("local") val sc = new SparkContext(conf) val scoreList = Array(Tuple2("class1", 80), Tuple2("class2", 75), Tuple2("class1", 90), Tuple2("class2", 60)) val scores = sc.parallelize(scoreList, 1) val totalScores = scores.reduceByKey(_ + _) totalScores.foreach(classScore => println(classScore._1 + ": " + classScore._2)) }
6、sortByKey:将学生分数进行排序
--------java实现--------- private static void sortByKey() { //创建SparkConf SparkConf conf = new SparkConf().setAppName("reduceByKey").setMaster("local"); //创建JavaSparkContext JavaSparkContext sc = new JavaSparkContext(conf); //模拟集合 List<Tuple2<Integer, String>> scoreList = Arrays.asList( new Tuple2<Integer, String>(65, "leo"), new Tuple2<Integer, String>(50, "tom"), new Tuple2<Integer, String>(100, "marry"), new Tuple2<Integer, String>(80, "jack")); //并行化集合, 创建RDD JavaPairRDD<Integer, String> scores = sc.parallelizePairs(scoreList); //针对scoreRDD,执行sortByKey算子; false: 降序 // sortByKey其实就是根据key进行排序,可以手动指定升序,或者降序 // 返回的,还是JavaPairRDD,其中元素内容,都是和原始RDD一模一样的 // 就是顺序不一样了 JavaPairRDD<Integer, String> sortedScores = scores.sortByKey(false); //打印sortedScored RDD sortedScores.foreach(new VoidFunction<Tuple2<Integer,String>>() { private static final long serialVersionUID = 1L; @Override public void call(Tuple2<Integer, String> t) throws Exception { System.out.println(t._1 + ": " + t._2); } }); //关闭JavaSparkContext sc.close(); }
//结果
100: marry
80: jack
65: leo
50: tom
--------scala实现--------- def sortByKey() { val conf = new SparkConf().setAppName("groupByKey").setMaster("local") val sc = new SparkContext(conf) val scoreList = Array(Tuple2(65, "leo"), Tuple2(50, "tom"), Tuple2(100, "marry"), Tuple2(85, "jack")) val scores = sc.parallelize(scoreList, 1) val sortedScores = scores.sortByKey(false) sortedScores.foreach(studentScore => println(studentScore._1 + ": " + studentScore)) }
7、join和cogroup:打印每个学生的成绩
join:
--------java实现-------- private static void join() { //创建SparkConf SparkConf conf = new SparkConf().setAppName("join").setMaster("local"); //创建JavaSparkContext JavaSparkContext sc = new JavaSparkContext(conf); //模拟集合 List<Tuple2<Integer, String>> studentList = Arrays.asList( new Tuple2<Integer, String>(1, "leo"), new Tuple2<Integer, String>(2, "jack"), new Tuple2<Integer, String>(3, "tom")); List<Tuple2<Integer, Integer>> scoreList = Arrays.asList( new Tuple2<Integer, Integer>(1, 100), new Tuple2<Integer, Integer>(2, 90), new Tuple2<Integer, Integer>(3, 60)); //并行化两个RDD JavaPairRDD<Integer, String> students = sc.parallelizePairs(studentList); JavaPairRDD<Integer, Integer> scores = sc.parallelizePairs(scoreList); //使用join关联两个RDD // 使用join算子关联两个RDD // join以后,还是会根据key进行join,并返回JavaPairRDD // 但是JavaPairRDD的第一个泛型类型是之前两个JavaPairRDD的key的类型,因为是通过key进行join的 // 第二个泛型类型,是Tuple2<v1, v2>的类型,Tuple2的两个泛型分别为原始RDD的value的类型 // join,就返回的RDD的每一个元素,就是通过key join上的一个pair // 什么意思呢?比如有(1, 1) (1, 2) (1, 3)的一个RDD // 还有一个(1, 4) (2, 1) (2, 2)的一个RDD // join以后,实际上会得到(1 (1, 4)) (1, (2, 4)) (1, (3, 4)) JavaPairRDD<Integer, Tuple2<String, Integer>> studentScores = students.join(scores); //打印studentScores RDD studentScores.foreach(new VoidFunction<Tuple2<Integer,Tuple2<String,Integer>>>() { private static final long serialVersionUID = 1L; @Override public void call(Tuple2<Integer, Tuple2<String, Integer>> t) throws Exception { System.out.println("student id: " + t._1); System.out.println("student name: " + t._2._1); System.out.println("student score: " + t._2._2); System.out.println("-----------------"); } }); //关闭JavaSparkContext sc.close(); } //结果
student id: 1
student name: leo
student score: 100
-----------------
student id: 3
student name: tom
student score: 60
-----------------
student id: 2
student name: jack
student score: 90
-----------------
--------scala实现--------- def join() { val conf = new SparkConf().setAppName("groupByKey").setMaster("local") val sc = new SparkContext(conf) val studentList = Array(Tuple2(1, "leo"), Tuple2(2, "jack"), Tuple2(3, "tom")) val scoreList = Array(Tuple2(1, 100),Tuple2(2, 90), Tuple2(3, 60)) val students = sc.parallelize(studentList); val scores = sc.parallelize(scoreList); val studentScores = students.join(scores) studentScores.foreach(studentScore => { println("student id:" + studentScore._1) println("student name:" + studentScore._2._1) println("student score:" + studentScore._2._1) println("==================") }) }
cogroup:
-------java实现-------- private static void cogroup() { //创建SparkConf SparkConf conf = new SparkConf().setAppName("cogroup").setMaster("local"); //创建JavaSparkContext JavaSparkContext sc = new JavaSparkContext(conf); //模拟集合 List<Tuple2<Integer, String>> studentList = Arrays.asList( new Tuple2<Integer, String>(1, "leo"), new Tuple2<Integer, String>(2, "jack"), new Tuple2<Integer, String>(3, "tom")); List<Tuple2<Integer, Integer>> scoreList = Arrays.asList( new Tuple2<Integer, Integer>(1, 100), new Tuple2<Integer, Integer>(2, 90), new Tuple2<Integer, Integer>(3, 60), new Tuple2<Integer, Integer>(1, 70), new Tuple2<Integer, Integer>(2, 80), new Tuple2<Integer, Integer>(3, 50)); //并行化两个RDD JavaPairRDD<Integer, String> students = sc.parallelizePairs(studentList); JavaPairRDD<Integer, Integer> scores = sc.parallelizePairs(scoreList); //使用cogroup关联两个RDD // 相当于是,一个key join上的所有value,都给放到一个Iterable里面去了 // cogroup,不太好讲解,希望通过动手编写我们的案例,仔细体会其中的奥妙 JavaPairRDD<Integer, Tuple2<Iterable<String>, Iterable<Integer>>> studentScores = students.cogroup(scores); //打印studentScores RDD studentScores.foreach(new VoidFunction<Tuple2<Integer,Tuple2<Iterable<String>,Iterable<Integer>>>>() { private static final long serialVersionUID = 1L; @Override public void call(Tuple2<Integer, Tuple2<Iterable<String>, Iterable<Integer>>> t) throws Exception { System.out.println("student id: " + t._1); System.out.println("student name: " + t._2._1); System.out.println("student score: " + t._2._2); System.out.println("-----------------"); } }); //关闭JavaSparkContext sc.close(); }
//结果
student id: 1
student name: [leo]
student score: [100, 70]
-----------------
student id: 3
student name: [tom]
student score: [60, 50]
-----------------
student id: 2
student name: [jack]
student score: [90, 80]
-----------------
二、action实战
1、reduce:累加
---------java实现--------- private static void reduce() { // 创建SparkConf和JavaSparkContext SparkConf conf = new SparkConf() .setAppName("reduce") .setMaster("local"); JavaSparkContext sc = new JavaSparkContext(conf); // 有一个集合,里面有1到10,10个数字,现在要对10个数字进行累加 List<Integer> numberList = Arrays.asList(1, 2, 3, 4, 5, 6, 7, 8, 9, 10); JavaRDD<Integer> numbers = sc.parallelize(numberList); // 使用reduce操作对集合中的数字进行累加 // reduce操作的原理: // 首先将第一个和第二个元素,传入call()方法,进行计算,会获取一个结果,比如1 + 2 = 3 // 接着将该结果与下一个元素传入call()方法,进行计算,比如3 + 3 = 6 // 以此类推 // 所以reduce操作的本质,就是聚合,将多个元素聚合成一个元素 int sum = numbers.reduce(new Function2<Integer, Integer, Integer>() { private static final long serialVersionUID = 1L; @Override public Integer call(Integer v1, Integer v2) throws Exception { return v1 + v2; } }); System.out.println("sum:" + sum); // 关闭JavaSparkContext sc.close(); } --------scala实现--------- def reduce() { val conf = new SparkConf().setAppName("reduce").setMaster("local") val sc = new SparkContext(conf) val numberArray = Array(1,2,3,4,5,6,7,8,9,10) val numbers = sc.parallelize(numberArray, 1) val sum = numbers.reduce(_ + _) println("sum: " + sum) }
2、collect
--------java实现--------- private static void collect() { // 创建SparkConf和JavaSparkContext SparkConf conf = new SparkConf() .setAppName("collect") .setMaster("local"); JavaSparkContext sc = new JavaSparkContext(conf); //有一个集合,里面有1到10,10个数字, List<Integer> numberList = Arrays.asList(1, 2, 3, 4, 5, 6, 7, 8, 9, 10); JavaRDD<Integer> numbers = sc.parallelize(numberList); //使用map操作将集合中所有数字乘以2 JavaRDD<Integer> doubleNumbers = numbers.map(new Function<Integer, Integer>() { private static final long serialVersionUID = 1L; @Override public Integer call(Integer v1) throws Exception { // TODO Auto-generated method stub return v1 * 2; } }); // 不用foreach action操作,在远程集群上遍历rdd中的元素,而使用collect操作,将分布在远程集群上的doubleNumbers RDD的数据拉取到本地 // 这种方式,一般不建议使用,因为如果rdd中的数据量比较大的话,比如超过1万条 // 那么性能会比较差,因为要从远程走大量的网络传输,将数据获取到本地 // 此外,除了性能差,还可能在rdd中数据量特别大的情况下,发生oom异常,内存溢出 // 因此,通常,还是推荐使用foreach action操作,来对最终的rdd元素进行处理 List<Integer> doubleNumberList = doubleNumbers.collect(); for(Integer num : doubleNumberList) { System.out.println(num); } // 关闭JavaSparkContext sc.close(); } -------scala实现-------- def collect() { val conf = new SparkConf().setAppName("collect").setMaster("local") val sc = new SparkContext(conf) val numberArray = Array(1,2,3,4,5,6,7,8,9,10) val numbers = sc.parallelize(numberArray, 1) val doubleNumbers = numbers.map { num => num * 2 } val doubleNumberArray = doubleNumbers.collect() for(num <- doubleNumberArray) { println(num) } }
3、count
------java实现------- private static void count() { // 创建SparkConf和JavaSparkContext SparkConf conf = new SparkConf() .setAppName("count") .setMaster("local"); JavaSparkContext sc = new JavaSparkContext(conf); //有一个集合,里面有1到10,10个数字, List<Integer> numberList = Arrays.asList(1, 2, 3, 4, 5, 6, 7, 8, 9, 10); JavaRDD<Integer> numbers = sc.parallelize(numberList); //对rdd使用count操作,统计它有多少个元素 long count = numbers.count(); System.out.println(count); // 关闭JavaSparkContext sc.close(); } -----scala实现------ def count() { val conf = new SparkConf().setAppName("count").setMaster("local") val sc = new SparkContext(conf) val numberArray = Array(1,2,3,4,5,6,7,8,9,10) val numbers = sc.parallelize(numberArray, 1) val count = numbers.count() println(count) }
4、take
--------java实现------- private static void take() { // 创建SparkConf和JavaSparkContext SparkConf conf = new SparkConf() .setAppName("take") .setMaster("local"); JavaSparkContext sc = new JavaSparkContext(conf); //有一个集合,里面有1到10,10个数字, List<Integer> numberList = Arrays.asList(1, 2, 3, 4, 5, 6, 7, 8, 9, 10); JavaRDD<Integer> numbers = sc.parallelize(numberList); //take操作,与col1ect类似,也是从远程集群上,获取rdd的数据 //但是co1lect是获取rdd的所有数据,take只是获取前n个数据 List<Integer> top3Numbers = numbers.take(3); for(Integer num : top3Numbers) { System.out.println(num); } // 关闭JavaSparkContext sc.close(); } -------scala实现---------- def take() { val conf = new SparkConf().setAppName("take").setMaster("local") val sc = new SparkContext(conf) val numberArray = Array(1,2,3,4,5,6,7,8,9,10) val numbers = sc.parallelize(numberArray, 1) val top3Numbers = numbers.take(3) for(num <- top3Numbers) { println(num) } }
5、saveAsTextFile
---------java实现----------- private static void saveAsTextFile() { // 创建SparkConf和JavaSparkContext SparkConf conf = new SparkConf() .setAppName("saveAsTextFile"); JavaSparkContext sc = new JavaSparkContext(conf); //有一个集合,里面有1到10,10个数字, List<Integer> numberList = Arrays.asList(1, 2, 3, 4, 5, 6, 7, 8, 9, 10); JavaRDD<Integer> numbers = sc.parallelize(numberList); //使用map操作将集合中左右数字乘以2 JavaRDD<Integer> doubleNumbers = numbers.map(new Function<Integer, Integer>() { private static final long serialVersionUID = 1L; @Override public Integer call(Integer v1) throws Exception { // TODO Auto-generated method stub return v1 * 2; } }); // 直接将rdd中的数据,保存在HFDS文件中 // 但是要注意,我们这里只能指定文件夹,也就是目录 // doubleNumbers.saveAsTextFile("hdfs://spark1:9000/double_number.txt"); // 那么实际上,会保存为目录中的/double_number.txt/part-00000文件 doubleNumbers.saveAsTextFile("hdfs://spark1:9000/double_number.txt"); // 关闭JavaSparkContext sc.close(); } ##打包--上传--运行 [root@spark1 java]# cat saveASTextFile.sh #运行脚本 /usr/local/spark/bin/spark-submit \ --class cn.spark.study.core.ActionOperation \ --num-executors 3 \ --driver-memory 100m \ --executor-memory 100m \ --executor-cores 3 \ /usr/local/spark-study/java/saprk-study-java-0.0.1-SNAPSHOT-jar-with-dependencies.jar \
6、countByKey
------java实现------- private static void countByKey() { // 创建SparkConf SparkConf conf = new SparkConf() .setAppName("countByKey") .setMaster("local"); // 创建JavaSparkContext JavaSparkContext sc = new JavaSparkContext(conf); // 模拟集合 List<Tuple2<String, String>> scoreList = Arrays.asList( new Tuple2<String, String>("class1", "leo"), new Tuple2<String, String>("class2", "jack"), new Tuple2<String, String>("class1", "marry"), new Tuple2<String, String>("class2", "tom"), new Tuple2<String, String>("class2", "david")); // 并行化集合,创建JavaPairRDD JavaPairRDD<String, String> students = sc.parallelizePairs(scoreList); // 对rdd应用countByKey操作,统计每个班级的学生人数,也就是统计每个key对应的元素个数 // 这就是countByKey的作用 // countByKey返回的类型,直接就是Map<String, Object> Map<String, Object> studentCounts = students.countByKey(); for(Map.Entry<String, Object> studentCount : studentCounts.entrySet()) { System.out.println(studentCount.getKey() + ": " + studentCount.getValue()); } // 关闭JavaSparkContext sc.close(); }
//结果
class1: 2
class2: 3
--------scala实现---------- def countByKey() { val conf = new SparkConf() .setAppName("countByKey") .setMaster("local") val sc = new SparkContext(conf) val studentList = Array(Tuple2("class1", "leo"), Tuple2("class2", "jack"), Tuple2("class1", "tom"), Tuple2("class2", "jen"), Tuple2("class2", "marry")) val students = sc.parallelize(studentList, 1) val studentCounts = students.countByKey() println(studentCounts) }
7、foreach
foreach,遍历RDD的元素,在远程集群上执行
----java实现-----
public static void foreach() { // 创建SparkConf SparkConf sparkConf = new SparkConf().setAppName("foreachJava").setMaster("local"); // 创建JavaSparkContext JavaSparkContext javaSparkContext = new JavaSparkContext(sparkConf); // 有一个集合,里面有1到10,10个数字, // 创建集合 List<Integer> nums = Arrays.asList(1, 2, 3, 4, 5, 6, 7, 8, 9, 10); // 并行化集合,创建初始化RDD JavaRDD<Integer> numsRDD = javaSparkContext.parallelize(nums); numsRDD.foreach(new VoidFunction<Integer>() { @Override public void call(Integer integer) throws Exception { System.out.println("integer = " + integer); } }); // 关闭javaSparkContext javaSparkContext.close(); }