7、transformation和action2

一、transformation开发实战

1、map: 将集合中每个元素乘以2

使用map算子,将集合中的每个元素都乘以2
map算子,是对任何类型的RDD,都可以调用的,在Java中,map算子接收的参数是Function对象
创建的Function对象,一定会让你设置第二个泛型参数,这个泛型类型,就是返回的新元素的类型
同时call()方法的返回类型,也必须与第二个泛型类型同步
在call()方法内部,就可以对原始RDD中的
每一个元素进行各种处理和计算,并返回一个新的元素
所有新的元素,就会组成一个新的RDD



----------java 实现----------

package cn.spark.study.core;

import java.util.Arrays;
import java.util.List;

import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.Function;
import org.apache.spark.api.java.function.VoidFunction;

/**
 * transformation实战
 * 
 * @author bcqf
 *
 */

public class TransformationOperation {
    public static void main(String[] args) {
        map();
        
    }

    /**
     * map算子案例:将集合中每一个元素都乘以2
     */
    private static void map() {
        // 创建SparkConf
        SparkConf conf = new SparkConf().setAppName("map").setMaster("local");

        // 创建JavaSparkcontext
        JavaSparkContext sc = new JavaSparkContext(conf);

        // 构造集合
        List<Integer> numbers = Arrays.asList(1, 2, 3, 4, 5);
        
        // 并行化集合,创建初始RDD
        JavaRDD<Integer> numberRDD = sc.parallelize(numbers);
        
        // 使用map算子,将集合中的每个元素都乘以2
        // map算子,是对任何类型的RDD,都可以调用的,在Java中,map算子接收的参数是Function对象
        // 创建的Function对象,一定会让你设置第二个泛型参数,这个泛型类型,就是返回的新元素的类型
        // 同时call()方法的返回类型,也必须与第二个泛型类型同步
        // 在call()方法内部,就可以对原始RDD中的每一个元素进行各种处理和计算,并返回一个新的元素
        // 所有新的元素,就会组成一个新的RDD

         //public interface Function<T1, R> extends Serializable {
         //public R call(T1 v1) throws Exception;
         //}

        JavaRDD<Integer> multipleNumberRDD = numberRDD.map(new Function<Integer, Integer>() {

            private static final long serialVersionUID = 1L;

            //传入ca11()方法的,就是1,2,3,4,5
            //返回的就是2,4,6,8,10
            @Override
            public Integer call(Integer v1) throws Exception {
                // TODO Auto-generated method stub
                return v1 * 2;
            }
        });    
        
        //打印新的RDD

//VoidFunction:A function with no return value

         //public interface VoidFunction<T> extends Serializable {
         //public void call(T t) throws Exception;
         //}

        multipleNumberRDD.foreach(new VoidFunction<Integer>() {

            private static final long serialVersionUID = 1L;

            @Override
            public void call(Integer t) throws Exception {
                System.out.println(t);
            }            
        });
        
        //关闭JavaSparkContext
        sc.close();
        
    }

    
        
}







----------scala 实现----------

package cn.spark.study.core

import org.apache.spark.SparkConf
import org.apache.spark.SparkContext

object TransformationOperation {
  def main(args: Array[String]) {
    map()
  }

  def map() {
    val conf = new SparkConf().setAppName("map").setMaster("local")

    val sc = new SparkContext(conf)

    val numbers = Array(1, 2, 3, 4, 5)
    
    val numberRDD = sc.parallelize(numbers, 1)
    
    val multipleNumberRDD = numberRDD.map { num => num * 2}
    
    multipleNumberRDD.foreach {num => println(num)}

  }

}

 

2、filter:过滤出集合中的偶数

-------------java实现------------

    /**
     * filter算子案例:过滤出集合中的偶数
     */
    private static void filter() {
        // 创建SparkConf
        SparkConf conf = new SparkConf().setAppName("filter").setMaster("local");

        // 创建JavaSparkContext
        JavaSparkContext sc = new JavaSparkContext(conf);

        // 模拟集合
        List<Integer> numbers = Arrays.asList(1, 2, 3, 4, 5, 6, 7, 8, 9, 10);
        
        // 并行化集合,创建初始RDD
        JavaRDD<Integer> numberRDD = sc.parallelize(numbers);
        
        // 对初始RDD执行filter算子,过滤出其中的偶数
        // filter算子,传入的也是Function,其他的使用注意点,实际上和map是一样的
        // 但是唯一的不同,就是call()方法的返回类型是Boolean
        // 每一个初始RDD中的元素,都会传入call()方法,此时你可以执行各种自定义的计算逻辑
        // 来判断这个元素是否是你想要的
        // 如果你想在新的RDD中保留这个元素,那么就返回true,否则,不想保留这个元素,返回false
        JavaRDD<Integer> evenNumberRDD =  numberRDD.filter(new Function<Integer, Boolean>() {

            private static final long serialVersionUID = 1L;

            @Override
            public Boolean call(Integer v1) throws Exception {
                return v1 % 2 == 0;
            }
        });
        
        // 打印新的RDD
        evenNumberRDD.foreach(new VoidFunction<Integer>() {

            private static final long serialVersionUID = 1L;

            @Override
            public void call(Integer t) throws Exception {
                System.out.println(t);            
            }
        });        
        
        // 关闭JavaSparkContext
        sc.close();

    }


//结果

2
4
6
8
10


-------------scala实现------------ def filter() { val conf = new SparkConf().setAppName("filter").setMaster("local") val sc = new SparkContext(conf) val numbers = Array(1, 2, 3, 4, 5, 6, 7, 8, 9, 10) val numberRDD = sc.parallelize(numbers, 1) val evenNumberRDD = numberRDD.filter { num => num % 2 == 0 } evenNumberRDD.foreach { num => println(num)} }

 

3、flatMap:将行拆分为单词

----------java实现-----------

    private static void flatMap() {
        // 创建SparkConf
        SparkConf conf = new SparkConf().setAppName("flatMap").setMaster("local");
        
        // 创建JavaSparkContext
        JavaSparkContext sc = new JavaSparkContext(conf);
        
        //构造集合
        List<String> lineList = Arrays.asList("hello you", "hello me", "hello word");
        
        // 并行化集合,创建RDD
        JavaRDD<String> lines = sc.parallelize(lineList);
        
        // 对RDD执行flatMap算子,将每一行文本,拆分为多个单词
        // flatMap算子,在Java中,接收的参数是FlatMapFunction
        // 我们需要自己定义FlatMapFunction的第一个泛型类型,即,代表了返回的新元素的类型
        // call()方法,返回的类型,不是U,而是Iterable<U>,这里的U也与第二个泛型类型相同
        // flatMap其实就是,接收原始RDD中的每个元素,并进行各种逻辑的计算和处理,返回可以返回多个元素
        // 多个元素,即封装在Iterable集合中,可以使用ArrayList等集合
        // 新的RDD中,即封装了所有的新元素,也就是说,新的RDD大小一定是大于等于原始RDD的大小

        // 从每个输入记录返回零个或多个输出记录的函数
        //public interface FlatMapFunction<T, R> extends Serializable {
        //public Iterable<R> call(T t) throws Exception;
        //}

        JavaRDD<String> words = lines.flatMap(new FlatMapFunction<String, String>() {

            private static final long serialVersionUID = 1L;

            @Override
            public Iterable<String> call(String t) throws Exception {
                return Arrays.asList(t.split(" "));
            }
        });
        
        // 打印新的RDD
        words.foreach(new VoidFunction<String>() {

            private static final long serialVersionUID = 1L;

            @Override
            public void call(String t) throws Exception {
                System.out.println(t);
            }
        });
        
        // 关闭JavaSparkContext
        sc.close();
        
    }


//结果

hello
you
hello
me
hello
word

 

-----------scala实现------------

  def flatMap() {
    val conf = new SparkConf().setAppName("flatMap").setMaster("local")
    
    val sc = new SparkContext(conf)
    
    val lineArray = Array("hello you", "hello me", "hello word")
    
    val lines = sc.parallelize(lineArray, 1)
    
    val words = lines.flatMap {line => line.split(" ")}
    
    words.foreach { word => println(word)}
  }

 

4、groupByKey:将每个班级的成绩进行分组

---------java实现---------
    private static void groupByKey() {
        //创建SparkConf
        SparkConf conf = new SparkConf().setAppName("groupByKey").setMaster("local");
        
        //创建JavaSparkContext
        JavaSparkContext sc = new JavaSparkContext(conf);
        
        //模拟集合
        List<Tuple2<String, Integer>> scoreList = Arrays.asList(
                new Tuple2<String, Integer>("class1", 80),
                new Tuple2<String, Integer>("class2", 75),
                new Tuple2<String, Integer>("class1", 90),
                new Tuple2<String, Integer>("class2", 65));
        
        //并行化集合
        JavaPairRDD<String, Integer> score = sc.parallelizePairs(scoreList);
        
        //针对scores RDD,执行groupByKey算子,对每个班级的成绩进行分组
        JavaPairRDD<String, Iterable<Integer>> groupedScores =  score.groupByKey();
        
        groupedScores.foreach(new VoidFunction<Tuple2<String,Iterable<Integer>>>() {

            private static final long serialVersionUID = 1L;

            @Override
            public void call(Tuple2<String, Iterable<Integer>> t) throws Exception {
                System.out.println("class: " + t._1);
                Iterator<Integer> ite = t._2.iterator();
                
                while(ite.hasNext()) {
                    System.out.println(ite.next());
                }
                System.out.println("======================");
            }
        });
        
        //关闭JavaSparkContext
        sc.close();
                
    }


//结果

class: class1
80
90
======================
class: class2
75
65
======================

 

---------scala实现---------
  def groupByKey() {
    val conf = new SparkConf().setAppName("groupByKey").setMaster("local")
    val sc = new SparkContext(conf)
    val scoreList = Array(Tuple2("class1", 80), Tuple2("class2", 75),
        Tuple2("class1", 90), Tuple2("class2", 60))
    val scores = sc.parallelize(scoreList, 1)
    val groupedScores = scores.groupByKey()
    
    groupedScores.foreach(score => { 
      println(score._1); 
      score._2.foreach { singleScore => println(singleScore)};
      println("==================")
      })      
      
  }

 

5、reduceByKey:统计每个班级的总分

--------java实现---------
    private static void reduceByKey() {
        //创建SparkConf
        SparkConf conf = new SparkConf().setAppName("reduceByKey").setMaster("local");
        
        //创建JavaSparkContext
        JavaSparkContext sc = new JavaSparkContext(conf);
        
        //模拟集合
        List<Tuple2<String, Integer>> scoreList = Arrays.asList(
                new Tuple2<String, Integer>("class1", 80),
                new Tuple2<String, Integer>("class2", 75),
                new Tuple2<String, Integer>("class1", 90),
                new Tuple2<String, Integer>("class2", 65));
        
        //并行化集合
        JavaPairRDD<String, Integer> scores = sc.parallelizePairs(scoreList);
        
        // 针对scoreRDD,执行reduceByKey算子
        // reduceByKey,接收的参数是Function2类型,它有三个泛型参数,实际上代表了三个值
        // 第一个泛型类型和第二个泛型类型,代表了原始RDD中的元素的value的类型
        // 因此对每个key进行reduce,都会依次将第一个、第二个value传入,将返回的值再与第三个value传入
        // 因此此处,会自动定义两个类型参数类型,代表call()方法的两个传入参数的类型
        // 第三个类型参数,代表了每次reduce操作返回的值的类型,默认也是与原始RDD的value类型相同的
        // reduceByKey算子返回的RDD,还是JavaPairRDD<Key,Value>

         //一个双参数函数,接收类型为T1和T2的参数,并返回一个R 
         //public interface Function2<T1, T2, R> extends Serializable {
         //public R call(T1 v1, T2 v2) throws Exception;
         //}

        JavaPairRDD<String, Integer> totalScores  = scores.reduceByKey(new Function2<Integer, Integer, Integer>() {

            private static final long serialVersionUID = 1L;

            //对每个key,都会将其value,依次传入ca11方法
            //从而聚合出每个key对应的一个value
            //然后,将每个key对应的一个value,组合成一个Tuple2,作为新RDD的元素
            @Override
            public Integer call(Integer v1, Integer v2) throws Exception {
                return v1 + v2;
            }
        });
        
        // 打印totalScores RDD
        totalScores.foreach(new VoidFunction<Tuple2<String,Integer>>() {

            private static final long serialVersionUID = 1L;

            @Override
            public void call(Tuple2<String, Integer> t) throws Exception {    
                System.out.println(t._1 + ": " + t._2);
            }
        });
                    
        
        //关闭JavaSparkContext
        sc.close();
    }


//结果

class1: 170
class2: 140

 

--------scala实现---------

  def reduceByKey() {
    val conf = new SparkConf().setAppName("groupByKey").setMaster("local")
    val sc = new SparkContext(conf)
    val scoreList = Array(Tuple2("class1", 80), Tuple2("class2", 75),
        Tuple2("class1", 90), Tuple2("class2", 60))
    val scores = sc.parallelize(scoreList, 1)
    val totalScores = scores.reduceByKey(_ + _)
    
    totalScores.foreach(classScore => println(classScore._1 + ": " + classScore._2))
    
  }

 

6、sortByKey:将学生分数进行排序

--------java实现---------
    private static void sortByKey() {
        //创建SparkConf
        SparkConf conf = new SparkConf().setAppName("reduceByKey").setMaster("local");
        
        //创建JavaSparkContext
        JavaSparkContext sc = new JavaSparkContext(conf);
        
        //模拟集合
        List<Tuple2<Integer, String>> scoreList = Arrays.asList(
                new Tuple2<Integer, String>(65, "leo"),
                new Tuple2<Integer, String>(50, "tom"),
                new Tuple2<Integer, String>(100, "marry"),
                new Tuple2<Integer, String>(80, "jack"));        
        
        //并行化集合, 创建RDD
        JavaPairRDD<Integer, String> scores = sc.parallelizePairs(scoreList);
        
        //针对scoreRDD,执行sortByKey算子; false: 降序
        // sortByKey其实就是根据key进行排序,可以手动指定升序,或者降序
        // 返回的,还是JavaPairRDD,其中元素内容,都是和原始RDD一模一样的
        // 就是顺序不一样了
        JavaPairRDD<Integer, String> sortedScores = scores.sortByKey(false);
        
        //打印sortedScored RDD
        sortedScores.foreach(new VoidFunction<Tuple2<Integer,String>>() {

            private static final long serialVersionUID = 1L;

            @Override
            public void call(Tuple2<Integer, String> t) throws Exception {
                System.out.println(t._1 + ": " + t._2);
            }
        });
        
        
        //关闭JavaSparkContext
        sc.close();
        
    }


//结果

100: marry
80: jack
65: leo
50: tom

 

--------scala实现---------
  def sortByKey() {
    val conf = new SparkConf().setAppName("groupByKey").setMaster("local")
    val sc = new SparkContext(conf)
    val scoreList = Array(Tuple2(65, "leo"), Tuple2(50, "tom"), Tuple2(100, "marry"), Tuple2(85, "jack"))
    val scores = sc.parallelize(scoreList, 1)
    val sortedScores = scores.sortByKey(false)
    sortedScores.foreach(studentScore => println(studentScore._1 + ": " + studentScore))
  }

 

7、join和cogroup:打印每个学生的成绩

join:

--------java实现--------
    private static void join() {
        //创建SparkConf
        SparkConf conf = new SparkConf().setAppName("join").setMaster("local");
        
        //创建JavaSparkContext
        JavaSparkContext sc = new JavaSparkContext(conf);
        
        //模拟集合
        List<Tuple2<Integer, String>> studentList = Arrays.asList(
                new Tuple2<Integer, String>(1, "leo"),
                new Tuple2<Integer, String>(2, "jack"),
                new Tuple2<Integer, String>(3, "tom"));
        
        List<Tuple2<Integer, Integer>> scoreList = Arrays.asList(
                new Tuple2<Integer, Integer>(1, 100),
                new Tuple2<Integer, Integer>(2, 90),
                new Tuple2<Integer, Integer>(3, 60));
        
        //并行化两个RDD
        JavaPairRDD<Integer, String> students = sc.parallelizePairs(studentList);
        JavaPairRDD<Integer, Integer> scores = sc.parallelizePairs(scoreList);
        
        //使用join关联两个RDD
        // 使用join算子关联两个RDD
        // join以后,还是会根据key进行join,并返回JavaPairRDD
        // 但是JavaPairRDD的第一个泛型类型是之前两个JavaPairRDD的key的类型,因为是通过key进行join的
        // 第二个泛型类型,是Tuple2<v1, v2>的类型,Tuple2的两个泛型分别为原始RDD的value的类型
        // join,就返回的RDD的每一个元素,就是通过key join上的一个pair
        // 什么意思呢?比如有(1, 1) (1, 2) (1, 3)的一个RDD
        // 还有一个(1, 4) (2, 1) (2, 2)的一个RDD
        // join以后,实际上会得到(1 (1, 4)) (1, (2, 4)) (1, (3, 4))
        JavaPairRDD<Integer, Tuple2<String, Integer>> studentScores = students.join(scores);
        
        //打印studentScores RDD
        studentScores.foreach(new VoidFunction<Tuple2<Integer,Tuple2<String,Integer>>>() {

            private static final long serialVersionUID = 1L;

            @Override
            public void call(Tuple2<Integer, Tuple2<String, Integer>> t) throws Exception {
                System.out.println("student id: " + t._1);
                System.out.println("student name: " + t._2._1);
                System.out.println("student score: " + t._2._2);
                System.out.println("-----------------");
            }
        });
        
        //关闭JavaSparkContext
        sc.close();
        
    }


//结果

student id: 1
student name: leo
student score: 100
-----------------
student id: 3
student name: tom
student score: 60
-----------------
student id: 2
student name: jack
student score: 90
-----------------


--------scala实现--------- def join() { val conf = new SparkConf().setAppName("groupByKey").setMaster("local") val sc = new SparkContext(conf) val studentList = Array(Tuple2(1, "leo"), Tuple2(2, "jack"), Tuple2(3, "tom")) val scoreList = Array(Tuple2(1, 100),Tuple2(2, 90), Tuple2(3, 60)) val students = sc.parallelize(studentList); val scores = sc.parallelize(scoreList); val studentScores = students.join(scores) studentScores.foreach(studentScore => { println("student id:" + studentScore._1) println("student name:" + studentScore._2._1) println("student score:" + studentScore._2._1) println("==================") }) }

 

cogroup:

-------java实现--------
    private static void cogroup() {
        //创建SparkConf
        SparkConf conf = new SparkConf().setAppName("cogroup").setMaster("local");
        
        //创建JavaSparkContext
        JavaSparkContext sc = new JavaSparkContext(conf);
        
        //模拟集合
        List<Tuple2<Integer, String>> studentList = Arrays.asList(
                new Tuple2<Integer, String>(1, "leo"),
                new Tuple2<Integer, String>(2, "jack"),
                new Tuple2<Integer, String>(3, "tom"));
        
        List<Tuple2<Integer, Integer>> scoreList = Arrays.asList(
                new Tuple2<Integer, Integer>(1, 100),
                new Tuple2<Integer, Integer>(2, 90),
                new Tuple2<Integer, Integer>(3, 60),
                new Tuple2<Integer, Integer>(1, 70),
                new Tuple2<Integer, Integer>(2, 80),
                new Tuple2<Integer, Integer>(3, 50));
        
        //并行化两个RDD
        JavaPairRDD<Integer, String> students = sc.parallelizePairs(studentList);
        JavaPairRDD<Integer, Integer> scores = sc.parallelizePairs(scoreList);
        
        //使用cogroup关联两个RDD
        // 相当于是,一个key join上的所有value,都给放到一个Iterable里面去了
        // cogroup,不太好讲解,希望通过动手编写我们的案例,仔细体会其中的奥妙        
        JavaPairRDD<Integer, Tuple2<Iterable<String>, Iterable<Integer>>> studentScores = students.cogroup(scores);
        
        //打印studentScores RDD
        studentScores.foreach(new VoidFunction<Tuple2<Integer,Tuple2<Iterable<String>,Iterable<Integer>>>>() {

            private static final long serialVersionUID = 1L;

            @Override
            public void call(Tuple2<Integer, Tuple2<Iterable<String>, Iterable<Integer>>> t) throws Exception {
                System.out.println("student id: " + t._1);
                System.out.println("student name: " + t._2._1);
                System.out.println("student score: " + t._2._2);
                System.out.println("-----------------");
                
            }
        });
        
        //关闭JavaSparkContext
        sc.close();
        
    }


//结果

student id: 1
student name: [leo]
student score: [100, 70]
-----------------
student id: 3
student name: [tom]
student score: [60, 50]
-----------------
student id: 2
student name: [jack]
student score: [90, 80]
-----------------

 

二、action实战

1、reduce:累加

---------java实现---------
    private static void reduce() {
        // 创建SparkConf和JavaSparkContext
        SparkConf conf = new SparkConf()
                .setAppName("reduce")
                .setMaster("local");  
        JavaSparkContext sc = new JavaSparkContext(conf);
        
        // 有一个集合,里面有1到10,10个数字,现在要对10个数字进行累加
        List<Integer> numberList = Arrays.asList(1, 2, 3, 4, 5, 6, 7, 8, 9, 10);
        JavaRDD<Integer> numbers = sc.parallelize(numberList);
        
        // 使用reduce操作对集合中的数字进行累加
        // reduce操作的原理:
            // 首先将第一个和第二个元素,传入call()方法,进行计算,会获取一个结果,比如1 + 2 = 3
            // 接着将该结果与下一个元素传入call()方法,进行计算,比如3 + 3 = 6
            // 以此类推
        // 所以reduce操作的本质,就是聚合,将多个元素聚合成一个元素
        int sum = numbers.reduce(new Function2<Integer, Integer, Integer>() {
            
            private static final long serialVersionUID = 1L;

            @Override
            public Integer call(Integer v1, Integer v2) throws Exception {
                return v1 + v2;
            }
            
        });
        
        System.out.println("sum:" + sum);  
        
        // 关闭JavaSparkContext
        sc.close();
    }





--------scala实现---------
  def reduce() {
    val conf = new SparkConf().setAppName("reduce").setMaster("local")
    val sc = new SparkContext(conf)
    
    val  numberArray = Array(1,2,3,4,5,6,7,8,9,10)
    val numbers = sc.parallelize(numberArray, 1)
    val sum = numbers.reduce(_ + _)
    
    println("sum: " + sum)
  }

 

2、collect

--------java实现---------
    private static void collect() {
        // 创建SparkConf和JavaSparkContext
        SparkConf conf = new SparkConf()
                .setAppName("collect")
                .setMaster("local");  
        JavaSparkContext sc = new JavaSparkContext(conf);
        
        //有一个集合,里面有1到10,10个数字,
        List<Integer> numberList = Arrays.asList(1, 2, 3, 4, 5, 6, 7, 8, 9, 10);
        JavaRDD<Integer> numbers = sc.parallelize(numberList);
        
        //使用map操作将集合中所有数字乘以2
        JavaRDD<Integer> doubleNumbers = numbers.map(new Function<Integer, Integer>() {
            
            private static final long serialVersionUID = 1L;

            @Override
            public Integer call(Integer v1) throws Exception {
                // TODO Auto-generated method stub
                return v1 * 2;
            }
        });

        // 不用foreach action操作,在远程集群上遍历rdd中的元素,而使用collect操作,将分布在远程集群上的doubleNumbers RDD的数据拉取到本地
        // 这种方式,一般不建议使用,因为如果rdd中的数据量比较大的话,比如超过1万条
        // 那么性能会比较差,因为要从远程走大量的网络传输,将数据获取到本地
        // 此外,除了性能差,还可能在rdd中数据量特别大的情况下,发生oom异常,内存溢出
        // 因此,通常,还是推荐使用foreach action操作,来对最终的rdd元素进行处理
        List<Integer> doubleNumberList = doubleNumbers.collect();
        for(Integer num : doubleNumberList) {
            System.out.println(num);
        }
                        
        // 关闭JavaSparkContext
        sc.close();
        
    }






-------scala实现--------
  def collect() {
    val conf = new SparkConf().setAppName("collect").setMaster("local")
    val sc = new SparkContext(conf)
    
    val  numberArray = Array(1,2,3,4,5,6,7,8,9,10)
    val numbers = sc.parallelize(numberArray, 1)
    val doubleNumbers = numbers.map { num => num * 2 }
    
    val doubleNumberArray = doubleNumbers.collect()
    
    for(num <- doubleNumberArray) {
      println(num)
    }
    
  }

 

3、count

------java实现-------
    private static void count() {
        // 创建SparkConf和JavaSparkContext
        SparkConf conf = new SparkConf()
                .setAppName("count")
                .setMaster("local");  
        JavaSparkContext sc = new JavaSparkContext(conf);
        
        //有一个集合,里面有1到10,10个数字,
        List<Integer> numberList = Arrays.asList(1, 2, 3, 4, 5, 6, 7, 8, 9, 10);
        JavaRDD<Integer> numbers = sc.parallelize(numberList);
        
        //对rdd使用count操作,统计它有多少个元素
        long count = numbers.count();
        System.out.println(count);
                        
        // 关闭JavaSparkContext
        sc.close();
        
    }







-----scala实现------
    def count() {
    val conf = new SparkConf().setAppName("count").setMaster("local")
    val sc = new SparkContext(conf)
    
    val  numberArray = Array(1,2,3,4,5,6,7,8,9,10)
    val numbers = sc.parallelize(numberArray, 1)
    val count = numbers.count()
    
    println(count)
  }

 

4、take

--------java实现-------
    private static void take() {
        // 创建SparkConf和JavaSparkContext
        SparkConf conf = new SparkConf()
                .setAppName("take")
                .setMaster("local");  
        JavaSparkContext sc = new JavaSparkContext(conf);
        
        //有一个集合,里面有1到10,10个数字,
        List<Integer> numberList = Arrays.asList(1, 2, 3, 4, 5, 6, 7, 8, 9, 10);
        JavaRDD<Integer> numbers = sc.parallelize(numberList);
        
        //take操作,与col1ect类似,也是从远程集群上,获取rdd的数据
        //但是co1lect是获取rdd的所有数据,take只是获取前n个数据
        List<Integer> top3Numbers = numbers.take(3);
        
        for(Integer num : top3Numbers) {
            System.out.println(num);
        }
                        
        // 关闭JavaSparkContext
        sc.close();
        
    }





-------scala实现----------
  def take() {
    val conf = new SparkConf().setAppName("take").setMaster("local")
    val sc = new SparkContext(conf)
    
    val  numberArray = Array(1,2,3,4,5,6,7,8,9,10)
    val numbers = sc.parallelize(numberArray, 1)
    val top3Numbers = numbers.take(3)
    
    for(num <- top3Numbers) {
      println(num)
    }
  }

 

5、saveAsTextFile

---------java实现-----------
    private static void saveAsTextFile() {
        // 创建SparkConf和JavaSparkContext
        SparkConf conf = new SparkConf()
                .setAppName("saveAsTextFile");

        JavaSparkContext sc = new JavaSparkContext(conf);
        
        //有一个集合,里面有1到10,10个数字,
        List<Integer> numberList = Arrays.asList(1, 2, 3, 4, 5, 6, 7, 8, 9, 10);
        JavaRDD<Integer> numbers = sc.parallelize(numberList);
        
        //使用map操作将集合中左右数字乘以2
        JavaRDD<Integer> doubleNumbers = numbers.map(new Function<Integer, Integer>() {
            
            private static final long serialVersionUID = 1L;

            @Override
            public Integer call(Integer v1) throws Exception {
                // TODO Auto-generated method stub
                return v1 * 2;
            }
        });

        // 直接将rdd中的数据,保存在HFDS文件中
        // 但是要注意,我们这里只能指定文件夹,也就是目录
        // doubleNumbers.saveAsTextFile("hdfs://spark1:9000/double_number.txt");
        // 那么实际上,会保存为目录中的/double_number.txt/part-00000文件
        doubleNumbers.saveAsTextFile("hdfs://spark1:9000/double_number.txt");
                                    
        // 关闭JavaSparkContext
        sc.close();
        
    }


##打包--上传--运行

[root@spark1 java]# cat saveASTextFile.sh         #运行脚本
/usr/local/spark/bin/spark-submit \
--class cn.spark.study.core.ActionOperation \
--num-executors 3 \
--driver-memory 100m \
--executor-memory 100m \
--executor-cores 3 \
/usr/local/spark-study/java/saprk-study-java-0.0.1-SNAPSHOT-jar-with-dependencies.jar \

 

6、countByKey

------java实现-------
    private static void countByKey() {
        // 创建SparkConf
        SparkConf conf = new SparkConf()
                .setAppName("countByKey")  
                .setMaster("local");
        // 创建JavaSparkContext
        JavaSparkContext sc = new JavaSparkContext(conf);
        
        // 模拟集合
        List<Tuple2<String, String>> scoreList = Arrays.asList(
                new Tuple2<String, String>("class1", "leo"),
                new Tuple2<String, String>("class2", "jack"),
                new Tuple2<String, String>("class1", "marry"),
                new Tuple2<String, String>("class2", "tom"),
                new Tuple2<String, String>("class2", "david"));  
        
        // 并行化集合,创建JavaPairRDD
        JavaPairRDD<String, String> students = sc.parallelizePairs(scoreList);
        
        // 对rdd应用countByKey操作,统计每个班级的学生人数,也就是统计每个key对应的元素个数
        // 这就是countByKey的作用
        // countByKey返回的类型,直接就是Map<String, Object>
        Map<String, Object> studentCounts = students.countByKey();
        
        for(Map.Entry<String, Object> studentCount : studentCounts.entrySet()) {
            System.out.println(studentCount.getKey() + ": " + studentCount.getValue());  
        }
        
        // 关闭JavaSparkContext
        sc.close();
    }


//结果

class1: 2
class2: 3


--------scala实现---------- def countByKey() { val conf = new SparkConf() .setAppName("countByKey") .setMaster("local") val sc = new SparkContext(conf) val studentList = Array(Tuple2("class1", "leo"), Tuple2("class2", "jack"), Tuple2("class1", "tom"), Tuple2("class2", "jen"), Tuple2("class2", "marry")) val students = sc.parallelize(studentList, 1) val studentCounts = students.countByKey() println(studentCounts) }

 

 

7、foreach

foreach,遍历RDD的元素,在远程集群上执行

----java实现-----
public static void foreach() {
        
    // 创建SparkConf
        
    SparkConf sparkConf = new SparkConf().setAppName("foreachJava").setMaster("local");
   
     
    // 创建JavaSparkContext
       
     JavaSparkContext javaSparkContext = new JavaSparkContext(sparkConf);
 

       
     // 有一个集合,里面有1到10,10个数字,
       
     // 创建集合
        
    List<Integer> nums = Arrays.asList(1, 2, 3, 4, 5, 6, 7, 8, 9, 10);
        

    // 并行化集合,创建初始化RDD
 
        
    JavaRDD<Integer> numsRDD = javaSparkContext.parallelize(nums);
       
     numsRDD.foreach(new VoidFunction<Integer>() {
            
        @Override
            
        public void call(Integer integer) throws Exception {
                
            System.out.println("integer = " + integer);
            
         }
       
       });
 
        

    // 关闭javaSparkContext
       
     javaSparkContext.close();
 
    
}
posted @ 2019-07-08 11:09  米兰的小铁將  阅读(371)  评论(0编辑  收藏  举报