哈夫曼树详解——PHP代码实现
在介绍哈夫曼树之前需要先了解一些专业术语
- 路径和路径长度
在一棵树中,从一个结点往下可以达到的孩子或孙子结点之间的通路,称为路径。通路中分支的数目称为路径长度。若规定根结点的层数为1,则从根结点到第L层结点的路径长度为L-1。
- 结点的权及带权路径长度
若将树中结点赋给一个有着某种含义的数值,则这个数值称为该结点的权。结点的带权路径长度为:从根结点到该结点之间的路径长度与该结点的权的乘积。
- 树的带权路径长度
树的带权路径长度规定为所有叶子结点的带权路径长度之和,记为WPL =(W1*L1+W2*L2+W3*L3+...+Wn*Ln),N个权值Wi(i=1,2,...n)构成一棵有N个叶结点的二叉树,相应的叶结点的路径长度为Li(i=1,2,...n)。
1、什么是哈夫曼树
给定n个权值作为n个叶子结点,构造一棵二叉树,若该树的带权路径长度达到最小,称这样的二叉树为最优二叉树,也称为哈夫曼树(Huffman Tree)。哈夫曼树是带权路径长度最短的树,权值较大的结点离根较近,可以证明哈夫曼树的WPL是最小的。
2、哈夫曼树的构造规则
假设有n个权值,则构造出的哈夫曼树有n个叶子结点。 n个权值分别设为 w1、w2、…、wn,则哈夫曼树的构造规则为:
- 将w1、w2、…,wn看成是有n 棵树的森林(每棵树仅有一个结点);
- 在森林中选出两个根结点的权值最小的树合并,作为一棵新树的左、右子树,且新树的根结点权值为其左、右子树根结点权值之和;
- 从森林中删除选取的两棵树,并将新树加入森林;
- 重复2、3步,直到森林中只剩一棵树为止,该树即为所求得的哈夫曼树。
3、哈夫曼编码
哈夫曼树的目的是为了解决当年远距离通信(主要是电报)的数据传输的最优化问题
比如,我们需要在网络上传输「BADCADEEFD」字符串序列给其他人,显然用二进制的数字(0和1)来表示是很自然的想法。每个字符占一个字节,如果要压缩的话可以通过二进制编码的方式进行传输,这个字符串包含了6个字符:ABCDEF,我们可以用对应的二进制表示如下:
这样,真正传输的数字编码就是「001000011010000011100100101011」,对方接收时按照3位一分来译码,如果文章很长,这个序列串也会非常长。
而事实上,不管是英文还是中文,不同字母或汉字的出现频率是不同的,完全可以用哈夫曼树的思想进行优化。
上述「BADCADEEFD」中不同字符的出现大致概率是这样的:
合起来是100%,我们可以这样来构建哈夫曼树:
再将左分支改为0,右分支改为1,对应的哈夫曼树如下:
此时,我们对这6个字母用其从树根到叶子所经过路径的 0或1 来编码,可以得到如下图的定义
我们将文字内容为「BADCADEEFD」再次编码,对比可以看到结果串变小了
原编码二进制串:001000011010000011100100101011(30个字符)
新编码二进制串:1001101101110100100100001(25个字符)
也就是说,我们的数据被压缩了,节约了大约 17%的存储或传输成本 随着字符的增加和多字符权重的不同,这种压缩会更加显出其优势。
哈夫曼编码的结果会导致不同字符编码长短不一,很容易混淆。因此在解码时,还是要用到哈夫曼编码,即发送方和接收方必须要约定好同样的哈夫曼编码规则。
4、PHP代码实现
1 <?php 2 /** 3 * HNode.php 4 * Created on 2019/5/4 13:11 5 * Created by Wilin 6 */ 7 8 class HNode 9 { 10 public $data; 11 public $weight; 12 13 public $code = ''; 14 public $left = null; 15 public $right = null; 16 17 public function __construct($data, $weight = 1) { 18 $this->data = $data; 19 $this->weight = $weight; 20 } 21 }
1 <?php 2 /** 3 * HuffmanTree.php 4 * Created on 2019/5/4 13:11 5 * Created by Wilin 6 */ 7 include "HNode.php"; 8 9 class HuffmanTree 10 { 11 private $wpl = 0; 12 private $root; 13 private $nodes; 14 15 public function getTree() { 16 return $this->root; 17 } 18 19 public function getWpl() { 20 return $this->wpl; 21 } 22 23 private function sortByWeight() { 24 usort($this->nodes, function ($nodeA, $nodeB) { 25 return $nodeA->weight <=> $nodeB->weight; 26 }); 27 } 28 29 public function create($text) { 30 31 $text = str_replace(' ','',strtolower($text)); 32 33 for ($i = 0; $i < mb_strlen($text); $i++) { 34 $index = $data = $text[$i]; 35 if (empty($this->nodes[$index])) { 36 $newNode = new HNode($data); 37 $this->nodes[$index] = $newNode; 38 } else { 39 $this->nodes[$index]->weight++; 40 } 41 } 42 43 while (sizeof($this->nodes) > 1) { 44 $this->sortByWeight(); 45 $min1 = array_shift($this->nodes); 46 $min2 = array_shift($this->nodes); 47 48 $newNode = new HNode(null, $min1->weight + $min2->weight); 49 $newNode->left = $min1; 50 $newNode->right = $min2; 51 array_push($this->nodes, $newNode); 52 } 53 54 $this->root = array_shift($this->nodes); 55 $this->fillCW($this->root); 56 } 57 58 private function fillCW($tree, $code = '') { 59 if($tree == null) { 60 return; 61 } 62 $tree->code = $code; 63 if(!$tree->left && !$tree->right){ 64 $this->wpl += mb_strlen($tree->code)*$tree->weight; 65 } 66 $this->fillCW($tree->left, $code.'0'); 67 $this->fillCW($tree->right, $code.'1'); 68 } 69 70 private function preOrderTraverse($tree) { 71 if($tree == null) { 72 return; 73 } 74 if(!$tree->left && !$tree->right){ 75 printf("%s : %s\n", $tree->data, $tree->code); 76 } 77 $this->preOrderTraverse($tree->left); 78 $this->preOrderTraverse($tree->right); 79 } 80 81 public function traverse() { 82 $this->preOrderTraverse($this->root); 83 } 84 } 85 86 $HTree = new HuffmanTree(); 87 $HTree->create('BADCADEEFD'); 88 $HTree->traverse(); 89 printf("WPL : %s\n", $HTree->getWpl()); 90 print_r($HTree->getTree());
打印结果如下:
E:\www\tree\4>php HuffmanTree.php e : 00 b : 010 c : 011 d : 10 f : 110 a : 111 WPL : 25 HNode Object ( [data] => [weight] => 10 [code] => [left] => HNode Object ( [data] => [weight] => 4 [code] => 0 [left] => HNode Object ( [data] => e [weight] => 2 [code] => 00 [left] => [right] => ) [right] => HNode Object ( [data] => [weight] => 2 [code] => 01 [left] => HNode Object ( [data] => b [weight] => 1 [code] => 010 [left] => [right] => ) [right] => HNode Object ( [data] => c [weight] => 1 [code] => 011 [left] => [right] => ) ) ) [right] => HNode Object ( [data] => [weight] => 6 [code] => 1 [left] => HNode Object ( [data] => d [weight] => 3 [code] => 10 [left] => [right] => ) [right] => HNode Object ( [data] => [weight] => 3 [code] => 11 [left] => HNode Object ( [data] => f [weight] => 1 [code] => 110 [left] => [right] => ) [right] => HNode Object ( [data] => a [weight] => 2 [code] => 111 [left] => [right] => ) ) ) )