ACM 第十八天
数学基础(卷积,FFT,FWT,FMT,鸽巢原理,群论,哈里亚余数,哈里亚计数定理,组合数学,LVG定理,期望DP,期望点贡献问题)
练习题:
A - Necklace of Beads
-1 denotes the end of the input file.
4 5 -1Sample Output
21 39
1 #include<stdio.h> 2 #include<math.h> 3 #include<algorithm> 4 #include <iostream> 5 //#define long long ll 6 using namespace std; 7 8 int gcd(int x,int y) 9 { 10 if(x%y==0) return y; 11 else return (gcd(y,x%y)); 12 } 13 int main() 14 { 15 int n; 16 long long ans; 17 while(~scanf("%d",&n) && n!=-1) 18 { 19 if(n<=0) //注意n没有最小值范围哦 20 { 21 printf("0\n"); 22 continue; 23 } 24 ans=0; 25 for(int i=1; i<=n; i++) 26 ans+=pow(3, gcd(i,n));//旋转 27 if(n%2) //翻转 28 { 29 ans+=n*pow(3,n/2+1); 30 } 31 else 32 { 33 ans+=(n/2)*pow(3,n/2); 34 ans+=(n/2)*pow(3,n/2+1); 35 } 36 ans=ans/(2*n); 37 printf("%lld\n",ans); 38 } 39 return 0; 40 }
C - Thief in a Shop
A thief made his way to a shop.
As usual he has his lucky knapsack with him. The knapsack can contain k objects. There are n kinds of products in the shop and an infinite number of products of each kind. The cost of one product of kind i is ai.
The thief is greedy, so he will take exactly k products (it's possible for some kinds to take several products of that kind).
Find all the possible total costs of products the thief can nick into his knapsack.
Input
The first line contains two integers n and k (1 ≤ n, k ≤ 1000) — the number of kinds of products and the number of products the thief will take.
The second line contains n integers ai (1 ≤ ai ≤ 1000) — the costs of products for kinds from 1 to n.
OutputPrint the only line with all the possible total costs of stolen products, separated by a space. The numbers should be printed in the ascending order.
Examples3 2
1 2 3
2 3 4 5 6
5 5
1 1 1 1 1
5
3 3
3 5 11
9 11 13 15 17 19 21 25 27 33
1 #include<stdio.h> 2 #include<math.h> 3 #include<algorithm> 4 #include <iostream> 5 #include<queue> 6 using namespace std; 7 const int maxn=1e3+5; 8 9 int a[maxn],dp[maxn*maxn]; 10 11 int main() 12 { 13 int n,k; 14 cin>>n>>k; 15 for(int i=1;i<=n;i++) 16 { 17 cin>>a[i]; 18 } 19 sort(a+1,a+n+1); 20 n=unique(a+1,a+n+1)-(a+1); 21 for(int i=2;i<=n;i++) 22 { 23 a[i]=a[i]-a[1]; 24 } 25 for(int i=1;i<=k*a[n];i++) 26 { 27 dp[i]=k+1; 28 } 29 for(int i=2;i<=n;i++) 30 { 31 for(int j=a[i];j<=k*a[i];j++) 32 { 33 dp[j]=min(dp[j],dp[j-a[i]]+1); 34 } 35 } 36 for(int i=0;i<=k*a[n];i++) 37 { 38 if(dp[i]<=k) 39 { 40 cout<<k*a[1]+i<<" "; 41 } 42 } 43 cout<<endl; 44 return 0; 45 46 }