DBUtils简介

DBUtils是Python的一个用于实现数据库连接池的模块。

此连接池有两种连接模式:

  • 模式一:为每个线程创建一个连接,线程即使调用了close方法,也不会关闭,只是把连接重新放到连接池,供自己线程再次使用。当线程终止时,连接自动关闭。
POOL = PersistentDB(
    creator=pymysql,  # 使用链接数据库的模块
    maxusage=None,  # 一个链接最多被重复使用的次数,None表示无限制
    setsession=[],  # 开始会话前执行的命令列表。如:["set datestyle to ...", "set time zone ..."]
    ping=0,
    # ping MySQL服务端,检查是否服务可用。# 如:0 = None = never, 1 = default = whenever it is requested, 2 = when a cursor is created, 4 = when a query is executed, 7 = always
    closeable=False,
    # 如果为False时, conn.close() 实际上被忽略,供下次使用,再线程关闭时,才会自动关闭链接。如果为True时, conn.close()则关闭链接,那么再次调用pool.connection时就会报错,因为已经真的关闭了连接(pool.steady_connection()可以获取一个新的链接)
    threadlocal=None,  # 本线程独享值得对象,用于保存链接对象,如果链接对象被重置
    host='127.0.0.1',
    port=3306,
    user='root',
    password='123',
    database='pooldb',
    charset='utf8'
)

def func():
    conn = POOL.connection(shareable=False)
    cursor = conn.cursor()
    cursor.execute('select * from tb1')
    result = cursor.fetchall()
    cursor.close()
    conn.close()

func()

 

  • 模式二:创建一批连接到连接池,供所有线程共享使用。

PS:由于pymysql、MySQLdb等threadsafety值为1,所以该模式连接池中的线程会被所有线程共享。

import time
import pymysql
import threading
from DBUtils.PooledDB import PooledDB, SharedDBConnection
POOL = PooledDB(
    creator=pymysql,  # 使用链接数据库的模块
    maxconnections=6,  # 连接池允许的最大连接数,0和None表示不限制连接数
    mincached=2,  # 初始化时,链接池中至少创建的空闲的链接,0表示不创建
    maxcached=5,  # 链接池中最多闲置的链接,0和None不限制
    maxshared=3,  # 链接池中最多共享的链接数量,0和None表示全部共享。PS: 无用,因为pymysql和MySQLdb等模块的 threadsafety都为1,所有值无论设置为多少,_maxcached永远为0,所以永远是所有链接都共享。
    blocking=True,  # 连接池中如果没有可用连接后,是否阻塞等待。True,等待;False,不等待然后报错
    maxusage=None,  # 一个链接最多被重复使用的次数,None表示无限制
    setsession=[],  # 开始会话前执行的命令列表。如:["set datestyle to ...", "set time zone ..."]
    ping=0,
    # ping MySQL服务端,检查是否服务可用。# 如:0 = None = never, 1 = default = whenever it is requested, 2 = when a cursor is created, 4 = when a query is executed, 7 = always
    host='127.0.0.1',
    port=3306,
    user='root',
    password='123',
    database='pooldb',
    charset='utf8'
)


def func():
    # 检测当前正在运行连接数的是否小于最大链接数,如果不小于则:等待或报raise TooManyConnections异常
    # 否则
    # 则优先去初始化时创建的链接中获取链接 SteadyDBConnection。
    # 然后将SteadyDBConnection对象封装到PooledDedicatedDBConnection中并返回。
    # 如果最开始创建的链接没有链接,则去创建一个SteadyDBConnection对象,再封装到PooledDedicatedDBConnection中并返回。
    # 一旦关闭链接后,连接就返回到连接池让后续线程继续使用。
    conn = POOL.connection()

    # print(th, '链接被拿走了', conn1._con)
    # print(th, '池子里目前有', pool._idle_cache, '\r\n')

    cursor = conn.cursor()
    cursor.execute('select * from tb1')
    result = cursor.fetchall()
    conn.close()


func()

 

在flask中使用DBUtils

flask中是没有ORM的,如果在flask里面连接数据库有两种方式

一:pymysql
二:SQLAlchemy
        是python 操作数据库的一个库。能够进行 orm 映射官方文档 sqlchemy
        SQLAlchemy“采用简单的Python语言,为高效和高性能的数据库访问设计,实现了完整的企业级持久模型”。SQLAlchemy的理念是,SQL数据库的量级和性能重要于对象集合;而对象集合的抽象又重要于表和行。

 链接池原理

- BDUtils数据库链接池  
                - 模式一:基于threaing.local实现为每一个线程创建一个连接,关闭是
                  伪关闭,当前线程可以重复
                - 模式二:连接池原理
                        - 可以设置连接池中最大连接数    9
                        - 默认启动时,连接池中创建连接  5
                        
                        - 如果有三个线程来数据库中获取连接:
                            - 如果三个同时来的,一人给一个链接
                            - 如果一个一个来,有时间间隔,用一个链接就可以为三个线程提供服务
                                - 说不准
                                    有可能:1个链接就可以为三个线程提供服务
                                    有可能:2个链接就可以为三个线程提供服务
                                    有可能:3个链接就可以为三个线程提供服务
                         PS、:maxshared在使用pymysql中均无用。链接数据库的模块:只有threadsafety>1的时候才有用

那么我们用pymysql来做。

为什么要使用数据库连接池呢?不用连接池有什么不好的地方呢?

方式一、每次操作都要链接数据库,链接次数过多

#!usr/bin/env python
# -*- coding:utf-8 -*-
import pymysql
from  flask import Flask

app = Flask(__name__)

# 方式一:这种方式每次请求,反复创建数据库链接,多次链接数据库会非常耗时
#        解决办法:放在全局,单例模式
@app.route('/index')
def index():
    # 链接数据库
    conn = pymysql.connect(host="127.0.0.1",port=3306,user='root',password='123', database='pooldb',charset='utf8')
    cursor = conn.cursor()
    cursor.execute("select * from td where id=%s", [5, ])
    result = cursor.fetchall()  # 获取数据
    cursor.close()
    conn.close()  # 关闭链接
    print(result)
    return  "执行成功"

if __name__ == '__main__':
    app.run(debug=True)

方式二、不支持并发

#!usr/bin/env python
# -*- coding:utf-8 -*-
import pymysql
from  flask import Flask
from threading import RLock

app = Flask(__name__)
CONN = pymysql.connect(host="127.0.0.1",port=3306,user='root',password='123', database='pooldb',charset='utf8')
# 方式二:放在全局,如果是单线程,这样就可以,但是如果是多线程,就得加把锁。这样就成串行的了
#        不支持并发,也不好。所有我们选择用数据库连接池
@app.route('/index')
def index():
    with RLock:
        cursor = CONN.cursor()
        cursor.execute("select * from td where id=%s", [5, ])
        result = cursor.fetchall()  # 获取数据
        cursor.close()
        print(result)
        return  "执行成功"
if __name__ == '__main__':
    app.run(debug=True)

方式三:由于上面两种方案都不完美,所以得把方式一和方式二联合一下(既让减少链接次数,也能支持并发)所有了方式三,需要

导入一个DButils模块

基于DButils实现的数据库连接池有两种模式:

模式一:为每一个线程创建一个链接(是基于本地线程来实现的。thread.local),每个线程独立使用自己的数据库链接,该线程关闭不是真正的关闭,本线程再次调用时,还是使用的最开始创建的链接,直到线程终止,数据库链接才关闭

注: 模式一:如果线程比较多还是会创建很多连接,模式二更常用 

#!usr/bin/env python
# -*- coding:utf-8 -*-
from flask import Flask
app = Flask(__name__)
from DBUtils.PersistentDB import PersistentDB
import pymysql
POOL = PersistentDB(
    creator=pymysql,  # 使用链接数据库的模块
    maxusage=None,  # 一个链接最多被重复使用的次数,None表示无限制
    setsession=[],  # 开始会话前执行的命令列表。如:["set datestyle to ...", "set time zone ..."]
    ping=0,
    # ping MySQL服务端,检查是否服务可用。# 如:0 = None = never, 1 = default = whenever it is requested, 2 = when a cursor is created, 4 = when a query is executed, 7 = always
    closeable=False,
    # 如果为False时, conn.close() 实际上被忽略,供下次使用,再线程关闭时,才会自动关闭链接。如果为True时, conn.close()则关闭链接,那么再次调用pool.connection时就会报错,因为已经真的关闭了连接(pool.steady_connection()可以获取一个新的链接)
    threadlocal=None,  # 本线程独享值得对象,用于保存链接对象,如果链接对象被重置
    host='127.0.0.1',
    port=3306,
    user='root',
    password='123',
    database='pooldb',
    charset='utf8'
)

@app.route('/func')
def func():
  conn = POOL.connection()
  cursor = conn.cursor()
  cursor.execute('select * from tb1')
  result = cursor.fetchall()
  cursor.close()
  conn.close() # 不是真的关闭,而是假的关闭。 conn = pymysql.connect()   conn.close()

  conn = POOL.connection()
  cursor = conn.cursor()
  cursor.execute('select * from tb1')
  result = cursor.fetchall()
  cursor.close()
  conn.close()
if __name__ == '__main__': app.run(debug=True)

模式二:创建一个链接池,为所有线程提供连接,使用时来进行获取,使用完毕后在放回到连接池。

    PS:假设最大链接数有10个,其实也就是一个列表,当你pop一个,人家会在append一个,链接池的所有的链接都是按照排队的这样的方式来链接的。

     链接池里所有的链接都能重复使用,共享的, 即实现了并发,又防止了链接次数太多

import time
import pymysql
import threading
from DBUtils.PooledDB import PooledDB, SharedDBConnection
POOL = PooledDB(
    creator=pymysql,  # 使用链接数据库的模块
    maxconnections=6,  # 连接池允许的最大连接数,0和None表示不限制连接数
    mincached=2,  # 初始化时,链接池中至少创建的空闲的链接,0表示不创建


    maxcached=5,  # 链接池中最多闲置的链接,0和None不限制
    maxshared=3,  # 链接池中最多共享的链接数量,0和None表示全部共享。PS: 无用,因为pymysql和MySQLdb等模块的 threadsafety都为1,所有值无论设置为多少,_maxcached永远为0,所以永远是所有链接都共享。
    blocking=True,  # 连接池中如果没有可用连接后,是否阻塞等待。True,等待;False,不等待然后报错
    maxusage=None,  # 一个链接最多被重复使用的次数,None表示无限制
    setsession=[],  # 开始会话前执行的命令列表。如:["set datestyle to ...", "set time zone ..."]
    ping=0,
    # ping MySQL服务端,检查是否服务可用。# 如:0 = None = never, 1 = default = whenever it is requested, 2 = when a cursor is created, 4 = when a query is executed, 7 = always
    host='127.0.0.1',
    port=3306,
    user='root',
    password='123',
    database='pooldb',
    charset='utf8'
)


def func():
    # 检测当前正在运行连接数的是否小于最大链接数,如果不小于则:等待或报raise TooManyConnections异常
    # 否则
    # 则优先去初始化时创建的链接中获取链接 SteadyDBConnection。
    # 然后将SteadyDBConnection对象封装到PooledDedicatedDBConnection中并返回。
    # 如果最开始创建的链接没有链接,则去创建一个SteadyDBConnection对象,再封装到PooledDedicatedDBConnection中并返回。
    # 一旦关闭链接后,连接就返回到连接池让后续线程继续使用。

    # PooledDedicatedDBConnection
    conn = POOL.connection()

    # print(th, '链接被拿走了', conn1._con)
    # print(th, '池子里目前有', pool._idle_cache, '\r\n')

    cursor = conn.cursor()
    cursor.execute('select * from tb1')
    result = cursor.fetchall()
    conn.close()





    conn = POOL.connection()

    # print(th, '链接被拿走了', conn1._con)
    # print(th, '池子里目前有', pool._idle_cache, '\r\n')

    cursor = conn.cursor()
    cursor.execute('select * from tb1')
    result = cursor.fetchall()
    conn.close()


func()

使用时我们可以将数据库连接池写到配置文件中

from datetime import timedelta
from redis import Redis
import pymysql
from DBUtils.PooledDB import PooledDB, SharedDBConnection

class Config(object):
    DEBUG = True
    SECRET_KEY = "umsuldfsdflskjdf"
    PERMANENT_SESSION_LIFETIME = timedelta(minutes=20)
    SESSION_REFRESH_EACH_REQUEST= True
    SESSION_TYPE = "redis"
    PYMYSQL_POOL = PooledDB(
        creator=pymysql,  # 使用链接数据库的模块
        maxconnections=6,  # 连接池允许的最大连接数,0和None表示不限制连接数
        mincached=2,  # 初始化时,链接池中至少创建的空闲的链接,0表示不创建
        maxcached=5,  # 链接池中最多闲置的链接,0和None不限制
        maxshared=3,
        # 链接池中最多共享的链接数量,0和None表示全部共享。PS: 无用,因为pymysql和MySQLdb等模块的 threadsafety都为1,所有值无论设置为多少,_maxcached永远为0,所以永远是所有链接都共享。
        blocking=True,  # 连接池中如果没有可用连接后,是否阻塞等待。True,等待;False,不等待然后报错
        maxusage=None,  # 一个链接最多被重复使用的次数,None表示无限制
        setsession=[],  # 开始会话前执行的命令列表。如:["set datestyle to ...", "set time zone ..."]
        ping=0,
        # ping MySQL服务端,检查是否服务可用。# 如:0 = None = never, 1 = default = whenever it is requested, 2 = when a cursor is created, 4 = when a query is executed, 7 = always
        host='127.0.0.1',
        port=3306,
        user='root',
        password='123456',
        database='s8day127db',
        charset='utf8'
    )

然后写一个类来帮我们完成pymql的操作

import pymysql
from settings import Config
class SQLHelper(object):

    @staticmethod
    def open(cursor):
        POOL = Config.PYMYSQL_POOL
        conn = POOL.connection()
        cursor = conn.cursor(cursor=cursor)
        return conn,cursor

    @staticmethod
    def close(conn,cursor):
        conn.commit()
        cursor.close()
        conn.close()

    @classmethod
    def fetch_one(cls,sql,args,cursor =pymysql.cursors.DictCursor):
        conn,cursor = cls.open(cursor)
        cursor.execute(sql, args)
        obj = cursor.fetchone()
        cls.close(conn,cursor)
        return obj

    @classmethod
    def fetch_all(cls,sql, args,cursor =pymysql.cursors.DictCursor):
        conn, cursor = cls.open(cursor)
        cursor.execute(sql, args)
        obj = cursor.fetchall()
        cls.close(conn, cursor)
        return obj

然后在视图函数中就可以使用这个类来进行数据库操作了

obj = SQLHelper.fetch_one('select id from users where name=%s',[field.data,])

小知识

1、子类继承父类的三种方式

class Dog(Animal): #子类  派生类
    def __init__(self,name,breed, life_value,aggr):
        # Animal.__init__(self,name,breed, life_value,aggr)#让子类执行父类的方法 就是父类名.方法名(参数),连self都得传
        super().__init__(name,life_value,aggr) #super关键字  ,都不用传self了,在新式类里的
        # super(Dog,self).__init__(name,life_value,aggr)  #上面super是简写
        self.breed = breed
    def bite(self,person):   #狗的派生方法
        person.life_value -= self.aggr
    def eat(self):  #父类方法的重写
        super().eat()
        print('dog is eating')

2、对象通过索引设置值的三种方式

方式一:重写__setitem__方法

class Foo(object):
    def __setitem__(self, key, value):
        print(key,value)

obj = Foo()
obj["xxx"] = 123   #给对象赋值就会去执行__setitem__方法

方式二:继承dict

class Foo(dict):
    pass

obj = Foo()
obj["xxx"] = 123
print(obj)

方式三:继承dict,重写__init__方法的时候,记得要继承父类的__init__方法

class Foo(dict):
    def __init__(self,val):
        # dict.__init__(self, val)#继承父类方式一
        # super().__init__(val)  #继承父类方式二
        super(Foo,self).__init__(val)#继承父类方式三
obj = Foo({"xxx":123})
print(obj)

总结:如果遇到obj["xxx"] = xx  , 

- 重写了__setitem__方法
- 继承dict

3、测试__name__方法

示例:

app1中:
    import app2
    print('app1', __name__)


app2中:
    print('app2', __name__)

现在app1是主程序,运行结果截图

总结:如果是在自己的模块中运行,__name__就是__main__,如果是从别的文件中导入进来的,就不是__name__了

flask配置文件的几种使用方式

==========方式一:============
 app.config['SESSION_COOKIE_NAME'] = 'session_lvning'  #这种方式要把所有的配置都放在一个文件夹里面,看起来会比较乱,所以选择下面的方式
==========方式二:==============
app.config.from_pyfile('settings.py')  #找到配置文件路径,创建一个模块,打开文件,并获取所有的内容,再将配置文件中的所有值,都封装到上一步创建的配置文件模板中

print(app.config.get("CCC"))
=========方式三:对象的方式============
 import os 
 os.environ['FLAKS-SETTINGS'] = 'settings.py'
 app.config.from_envvar('FLAKS-SETTINGS') 

===============方式四(推荐):字符串的方式,方便操作,不用去改配置,直接改变字符串就行了 ==============
app.config.from_object('settings.DevConfig')

----------settings.DevConfig----------
from app import app
class BaseConfig(object):
    NNN = 123  #注意是大写
    SESSION_COOKIE_NAME = "session_sss"

class TestConfig(BaseConfig):
    DB = "127.0.0.1"

class DevConfig(BaseConfig):
    DB = "52.5.7.5"

class ProConfig(BaseConfig):
    DB = "55.4.22.4"

要想在视图函数中获取配置文件的值,都是通过app.config来拿。但是如果视图函数和Flask创建的对象app不在一个模块。就得

导入来拿。可以不用导入,。直接导入一个current_app,这个就是当前的app对象,用current_app.config就能查看到了当前app的所有的配置文件

from flask import Flask,current_app

@app.route('/index',methods=["GET","POST"])
def index():
    print(current_app.config)   #当前的app的所有配置
    session["xx"] = "fdvbn"
    return "index"

 

posted on 2018-05-01 18:54  Py行僧  阅读(282)  评论(0编辑  收藏  举报