图及其相关算法

图

最短路径

Dijkstra流程

  • 设定辅助数组D,其中D[i]表示节点i距离源点s的最短距离
  • 设定辅助数组F,其中F[i]表示节点i使用最短距离到达源点s的上一个节点
  • 集合S,表示已确定可达最短路径的节点集合,集合T,表示未确定最短路径的节点集合,其中V=S+T (V为图中全部节点的集合)
  • 源点s加入集合S
  • 基于集合S内的节点,寻找T集合的节点中,拥有最小路径权重的可达节点y
  • 节点y加入集合S,T集合中剔除节点y,更新T集合中其他节点的路径权重,即数组D,以及数据F
  • 重复上述步骤,直到T集合为空
  • 结束算法

代码

package code

import (
	"container/heap"
	"fmt"
	"math"
)

type Graph struct {
	Nv int
	G  [][]int
}

type Edge struct {
	Start int
	End   int
	Value int
}

type PriorityQueue []*Edge

func (pq PriorityQueue) Len() int { return len(pq) }

func (pq PriorityQueue) Less(i, j int) bool {
	return pq[i].Value < pq[j].Value
}

func (pq PriorityQueue) Swap(i, j int) {
	pq[i], pq[j] = pq[j], pq[i]
}

func (pq *PriorityQueue) Push(x interface{}) {
	item := x.(*Edge)
	*pq = append(*pq, item)
}

func (pq *PriorityQueue) Pop() interface{} {
	old := *pq
	n := len(old)
	item := old[n-1]
	*pq = old[0 : n-1]
	return item
}

func Dijkstra(g *Graph, s int) ([]int, []int) {
	var p PriorityQueue = make([]*Edge, 0, g.Nv)
	dis := make([]int, g.Nv)
	from := make([]int, g.Nv)
	mark := make([]bool, g.Nv)
	p.Push(&Edge{Start: s, End: s, Value: 0})
	for k := 0; k < g.Nv; k++ {
		dis[k] = math.MaxInt64
	}
	dis[s] = 0
	count := 0
	t := s
	part := false
	for {
		if len(p) > 0 {
			t = heap.Pop(&p).(*Edge).End
		} else {
			part = true
			break
		}
		if mark[t] {
			continue
		}

		count++
		for i := 0; i < g.Nv; i++ {
			if g.G[t][i] == 0 {
				continue
			}
			if dis[i]-dis[t] > g.G[i][t] {
				dis[i] = dis[t] + g.G[i][t]
				from[i] = t
			}
			if !mark[i] {
				heap.Push(&p, &Edge{Start: t, End: i, Value: g.G[t][i]})
			}
		}
		if count > g.Nv {
			break
		}
	}
	if part {
		fmt.Printf("图中有独立节点")
	}
	return dis, from
}
//test
import "testing"

func TestDijkstra(t *testing.T) {
	g := Graph{
		4,
		[][]int{
			{0, 1, 3, 5},
			{1, 0, 1, 0},
			{3, 1, 0, 1},
			{5, 0, 1, 0},
		},
	}
	t.Log(Dijkstra(&g, 1))
}

BellmanFord流程

  • 设定辅助数组D,其中D[i]表示节点i距离源点s的最短距离
  • 设定辅助数组F,其中F[i]表示节点i使用最短距离到达源点s的上一个节点
  • 点和边的两层循环,每次选择点i,遍历所有边,确定节点i能够使用的最短路径

代码

package code

import (
	"math"
)

type Egraph struct {
	Nv    int
	Ne    int
	Edges []Edge
}


type Edge struct {
	Start int
	End   int
	Value int
}

func BellmanFord(g *Egraph, s int) ([]int, []int, bool) {
	dis := make([]int, g.Nv)
	form := make([]int, g.Nv)
	for t := 0; t < len(dis); t++ {
		dis[t] = math.MaxInt64
	}
	dis[s] = 0
	flag := false
	for k := 0; k < g.Nv; k++ {
		for j := 0; j < g.Ne; j++ {
			f, t := g.Edges[j].Start, g.Edges[j].End
			if dis[t]-dis[f] > g.Edges[j].Value {
				dis[t] = dis[f] + g.Edges[j].Value
				form[t] = f
			}
		}
	}
	for j := 0; j < g.Ne; j++ {
		f, t := g.Edges[j].Start, g.Edges[j].End
		if dis[t]-dis[f] > g.Edges[j].Value {
			flag = true
			break
		}
	}
	return dis, form, flag
}

//test
func TestBellmanFord(t *testing.T) {
	g := Egraph{
		4, 10,
		[]Edge{
			{0, 1, 1},
			{1, 0, 1},

			{1, 2, 1},
			{2, 1, 1},

			{0, 2, 3},
			{2, 0, 3},

			{2, 3, 1},
			{3, 2, 1},
			{0, 3, 5},
			{3, 0, 5},
		},
	}
	t.Log(BellmanFord(&g, 2))
}

FloydWarshall流程

  • 设定辅助数组D,其中D[i]表示节点i距离源点s的最短距离
  • 暴力破解,基于节点个数的三次循环,寻找最短路径

代码

package code

import (
	"math"
)

type Graph struct {
	Nv int
	G  [][]int
}

func FloydWarshall(g *Graph) [][]int {
	dis := make([][]int, g.Nv)
	for i := 0; i < g.Nv; i++ {
		dis[i] = make([]int, g.Nv)
		for j := 0; j < g.Nv; j++ {
			if i!=j && g.G[i][j] == 0 {
				dis[i][j] = math.MaxInt64
			} else {
				dis[i][j] = g.G[i][j]
			}
		}
	}
	for i := 0; i < g.Nv; i++ {
		for j := 0; j < g.Nv; j++ {
			for k := 0; k < g.Nv; k++ {
				if dis[i][j]-dis[i][k] > dis[k][j] {
					dis[i][j] = dis[i][k] + dis[k][j]
				}
			}
		}
	}
	return dis
}

// test
package code

func TestFloydWarshall(t *testing.T) {
	g := Graph{
		4,
		[][]int{
			{0, 1, 3, 5},
			{1, 0, 1, 0},
			{3, 1, 0, 1},
			{5, 0, 1, 0},
		},
	}
	t.Log(FloydWarshall(&g))
}

最小生成树

Prim算法流程

  • 选点算法,随意选择一个节点s开始
  • 将s相关联边集合收入E中
  • 在E中选择,权重最小的边e
  • 基于边e的另一个节点p,重复以上步骤
  • 节点完全覆盖后,算法截止

代码

package prim
import "container/heap"

type Egraph struct {
	Nv    int
	Ne    int
	Edges []Edge
}

type Graph struct {
	Nv int
	G  [][]int
}

type Edge struct {
	Start int
	End   int
	Value int
}

type PriorityQueue []*Edge

func (pq PriorityQueue) Len() int { return len(pq) }

func (pq PriorityQueue) Less(i, j int) bool {
	return pq[i].Value < pq[j].Value
}

func (pq PriorityQueue) Swap(i, j int) {
	pq[i], pq[j] = pq[j], pq[i]
}

func (pq *PriorityQueue) Push(x interface{}) {
	item := x.(*Edge)
	*pq = append(*pq, item)
}

func (pq *PriorityQueue) Pop() interface{} {
	old := *pq
	n := len(old)
	item := old[n-1]
	*pq = old[0 : n-1]
	return item
}

func Prim(g *Graph) []Edge {
	var p PriorityQueue = make([]*Edge, 0, 10)
	mark := make(map[int]bool, g.Nv)
	s := 0
	mark[s] = true
	ret := make([]Edge, 0)
	for {
		for i := 0; i < g.Nv; i++ {
			if !mark[i] && g.G[s][i] != 0 {
				heap.Push(&p, &Edge{Start: s, End: i, Value: g.G[s][i]})
			}
		}
		if len(p) == 0 {
			break
		}
		k := heap.Pop(&p).(*Edge)
		for len(p) > 0 && mark[k.End] {
			k = heap.Pop(&p).(*Edge)
		}
		if !mark[k.End] {
			ret = append(ret, *k)
		}
		mark[k.End] = true
		s = k.End
	}
	return ret
}

//test

import "testing"

func TestPrim(t *testing.T) {
	g := Graph{
		4,
		[][]int{
			{0, 1, 3, 5},
			{1, 0, 1, 0},
			{3, 1, 0, 1},
			{5, 0, 1, 0},
		},
	}
	t.Log(Prim(&g))
}

Kruskal算法流程

  • 选边算法,将所有图中边放入集合E中
  • 选择权重最小边e,将e加入最小生成树边集合R,集合E中移除e
  • 重复上一步,选择的最小边,不能和已选边集合的节点形成连通
  • 所有节点覆盖后,结束

代码

package code

import "container/heap"


type Graph struct {
	Nv int
	G  [][]int
}

type Edge struct {
	Start int
	End   int
	Value int
}

type PriorityQueue []*Edge

func (pq PriorityQueue) Len() int { return len(pq) }

func (pq PriorityQueue) Less(i, j int) bool {
	return pq[i].Value < pq[j].Value
}

func (pq PriorityQueue) Swap(i, j int) {
	pq[i], pq[j] = pq[j], pq[i]
}

func (pq *PriorityQueue) Push(x interface{}) {
	item := x.(*Edge)
	*pq = append(*pq, item)
}

func (pq *PriorityQueue) Pop() interface{} {
	old := *pq
	n := len(old)
	item := old[n-1]
	*pq = old[0 : n-1]
	return item
}

type UnionSet []int

func NewUnionSet(k int) UnionSet {
	u := make(UnionSet, k)
	for i := 0; i < k; i++ {
		u[i] = i
	}
	return u
}

func (u *UnionSet) Union(i, j int) {
	t := u.Find(i)
	k := u.Find(j)
	if t != k {
		(*u)[k] = t
	}
}

func (u *UnionSet) Find(i int) int {
	if (*u)[i] != i {
		(*u)[i] = u.Find((*u)[i])
	}
	return (*u)[i]
}

func (u *UnionSet) IsSameFather(i, j int) bool {
	return u.Find(i) == u.Find(j)
}

func Kruskal(g *Graph) []Edge {
	var p PriorityQueue = make([]*Edge, 0, 10)
	ret := make([]Edge, 0)
	for i := 0; i < g.Nv; i++ {
		for j := 0; j <= i; j++ {
			if g.G[i][j] != 0 {
				heap.Push(&p, &Edge{Start: i, End: j, Value: g.G[i][j]})
			}
		}
	}
	uSet := NewUnionSet(g.Nv)
	k := heap.Pop(&p).(*Edge)
	uSet.Union(k.Start, k.End)
	ret = append(ret, *k)
	for {
		if len(p) == 0 {
			break
		}
		k = heap.Pop(&p).(*Edge)
		if uSet.IsSameFather(k.Start, k.End) {
			continue
		}
		ret = append(ret, *k)
		uSet.Union(k.Start, k.End)
		if len(ret) == g.Nv-1 {
			break
		}
	}
	return ret
}
//test 
func TestKruskal(t *testing.T) {
	g := Graph{
		4,
		[][]int{
			{0, 1, 3, 5},
			{1, 0, 1, 0},
			{3, 1, 0, 1},
			{5, 0, 1, 0},
		},
	}
	t.Log(Kruskal(&g))
}

参考

posted @ 2020-08-19 12:07  星灬期灬五  阅读(149)  评论(0编辑  收藏  举报