爬树的甲壳虫(扩展欧几里得算法)
#include<bits/stdc++.h> using namespace std; typedef long long ll; const int maxn = 1e5 + 10; const int MOD = 998244353; ll x[maxn], y[maxn]; //快速幂模板 ll ksm(ll a, ll b, ll m) { ll ans = 1; while(b) { if(b & 1)ans = ans * a % m; b >>= 1; a = a * a % m; } return ans; } //求模MOD意义下的x的逆元 ll inv(ll x) { return ksm(x, MOD - 2, MOD); } //扩展欧几里得模板 //求解cx+dy = gcd(c, d)的解,返回值为gcd(c, d) ll extgcd(ll c, ll d, ll&x, ll&y) { ll g = c; if(d) { g = extgcd(d, c % d, y, x); y -= (c / d) * x; } else x = 1, y = 0; return g; } int main() { int n; cin >> n; for(int i = 1; i <= n; i++) cin >> x[i] >> y[i]; ll a = 0, b = 0; for(int i = n; i >= 1; i--) { ll p = x[i] * inv(y[i]) % MOD, p_1 = (y[i] - x[i]) * inv(y[i]) % MOD; a = (p + p_1 * a) % MOD; b = (1 + p_1 * b) % MOD; } //求解cx + dy = e ll c = a - 1, d = MOD, e = MOD - b, x, y; //先求解cx + dy = gcd(c, d) ll g = extgcd(c, d, x, y); //再求解cx + dy = e ll ans_x = x * e / g; cout<<(ans_x % MOD + MOD ) % MOD<<endl; return 0; }
不取模版本
#include<bits/stdc++.h> using namespace std; typedef long long ll; const int maxn = 1e5 + 10; const int MOD = 998244353; double x[maxn], y[maxn]; //快速幂模板 ll ksm(ll a, ll b, ll m) { ll ans = 1; while(b) { if(b & 1)ans = ans * a % m; b >>= 1; a = a * a % m; } return ans; } //求模MOD意义下的x的逆元 ll inv(ll x) { return ksm(x, MOD - 2, MOD); } //扩展欧几里得模板 //求解cx+dy = gcd(c, d)的解,返回值为gcd(c, d) ll extgcd(ll c, ll d, ll&x, ll&y) { ll g = c; if(d) { g = extgcd(d, c % d, y, x); y -= (c / d) * x; } else x = 1, y = 0; return g; } int main() { int n; cin >> n; for(int i = 1; i <= n; i++) cin >> x[i] >> y[i]; double a = 0, b = 0; for(int i = n; i >= 1; i--) { double p = x[i]/y[i] /* inv(y[i]) % MOD,*/,p_1 = (1-x[i]/y[i]) ;//* inv(y[i]) % MOD; // cout<<p<<" "<<p_1<<endl; a = (p + p_1 * a);// % MOD; b = (1 + p_1 * b) ;//% MOD; cout<<a<<" "<<b<<endl; } cout<<"结果"<<b/(1-a)<<endl; // 3 // 1 2 // 3 5 // 7 11 // cout<<187/8; // //求解cx + dy = e // ll c = a - 1, d = MOD, e = MOD - b, x, y; // //先求解cx + dy = gcd(c, d) // ll g = extgcd(c, d, x, y); // //再求解cx + dy = e // ll ans_x = x * e / g; // cout<<(ans_x % MOD + MOD ) % MOD<<endl; return 0; }
其他人的代码
#include<bits/stdc++.h> using namespace std; const int MOD = 998244353; const int maxn = 1e5 + 5; typedef long long LL; int x[maxn], y[maxn]; // 快速幂 a^n % P LL fpow(LL a, int n, int P){ LL res = 1; while (n){ if(n&1) res = res * a % P; a = (a * a) % P; n >>= 1; } return res; } int main(){ int n; scanf("%d", &n); for (int i=1; i<=n; ++i){ scanf("%d%d", &x[i], &y[i]); } // 计算s(i)和ans = a_0,pre = s(i-1) int ans = 0, pre = 1; for (int i=1; i<=n; ++i){ pre = 1LL * pre * y[n-i+1] % MOD * fpow(y[n-i+1]-x[n-i+1], MOD-2, MOD) % MOD; // y >= x ans = (1LL * ans + pre) % MOD; } printf("%d\n", ans); return 0; }