Python多线程及其使用方法

【Python之旅】第六篇(三):Python多线程及其使用方法

 

python 多线程 多线程使用方法 GIL

摘要: 1.Python中的多线程     执行一个程序,即在操作系统中开启了一个进程,在某一时刻,一个CPU内核只能进行一个进程的任务,现在的计算机所说的多进程/多任务其实是通过加快CPU的执行速度来实现的,因为一个CPU每秒能执行上亿次的计算,能够对进程进行很多次切换,所以在人为可以感知的时间里,看上...

1.Python中的多线程

    执行一个程序,即在操作系统中开启了一个进程,在某一时刻,一个CPU内核只能进行一个进程的任务,现在的计算机所说的多进程/多任务其实是通过加快CPU的执行速度来实现的,因为一个CPU每秒能执行上亿次的计算,能够对进程进行很多次切换,所以在人为可以感知的时间里,看上去,计算机确实是在同时执行多个程序,即同时处理多个进程。

    一个进程中可以包含有多个线程,这多个线程为实现该进程的某个主要功能而运行着,多个线程可以进行串行工作,也可以并发同时进行工作,显然后者可以节省更多的时间。

    在Python中是支持多线程并发执行的,只是Python中的多线程只能利用单核,也就是说Python中的某一个进程的多个线程只能在一个CPU核心上运行,而不能分配在多个CPU核心中运行,这是考虑到线程安全的缘故,而Python中的GIL则保证了线程安全。关于Python中的GIL,可以参考下面一篇文章:《浅析Python的GIL和线程安全》

   下面是自己在学习过程中的一些课堂笔记,因为还没有真正学习一些理论,所以可能会有些错误,但目前是方便自己的理解:

1
2
3
4
5
6
7
8
9
即GLI是以CPU核心为单位来控制全局锁,所以是不能跨不同的CPU(核心 )的
GLI可以保证同一个进程中,某一个线程的共享数据在某一时刻只能同时被另外一个线程修改(使用),
而不能同时被多个线程修改(使用),如果去掉GLI,则需要自己为线程加锁,这样之后,性能比原来还要差。
当然,难道就不能充分利用多核CPU或多个CPU了?
做成多进程就可以了,不同的进程运行在不同的CPU(核心)上,也可以实现并发,
只是这样的话就会比较浪费内存空间,考虑同时运行10个QQ程序的情况,
假如1个QQ占用500M的内存空间,则10个QQ就要占用5G的内存空间了。但如果是多线程的话,
可能10个QQ还是共享着这500M的内存空间。还有一个缺点就是,多进程间的数据直接访问可能
会比较麻烦,但其实也是可以实现的,比如chrome浏览器就是用多进程实现的。

     目前首先要明确的是,Python中是不能把一个进程的多个线程分布在不同的CPU核心上运行的。

 

2.Python多线程使用方法1

    给出下面的程序代码及注释:

1
2
3
4
5
6
7
8
9
10
import threading    #Python多线程模块
import time
 
def run(num):
    print 'Hi, I am thread %s..lalala' % num
    time.sleep(1)
 
for in range(20):
    t = threading.Thread(target=run, args=(i,))    #多线程使用方法,target为需要执行多线程的函数,args为函数中的参数,注意这里的参数写成(i,),即如果只能一个参数,也要加上一个","
    t.start()    #开始执行多线程

    程序运行结果如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
xpleaf@xpleaf-machine:/mnt/hgfs/Python/day6$ python thread4.py 
Hi, I am thread 0..lalala
Hi, I am thread 1..lalala
Hi, I am thread 2..lalala
Hi, I am thread 3..lalala
Hi, I am thread 4..lalala
Hi, I am thread 5..lalala
Hi, I am thread 6..lalala
Hi, I am thread 7..lalala
Hi, I am thread 8..lalala
Hi, I am thread 9..lalala
Hi, I am thread 10..lalala
Hi, I am thread 11..lalala
Hi, I am thread 12..lalala
Hi, I am thread 13..lalala
Hi, I am thread 14..lalala
Hi, I am thread 15..lalala
Hi, I am thread 16..lalala
Hi, I am thread 17..lalala
Hi, I am thread 18..lalala
Hi, I am thread 19..lalala

    直接看执行结果是看不出什么的,这里说一下这个程序的执行过程:0到19是同时打印输入的,在打印19后,程序sleep 1秒后才结束程序的运行。

    上面这个程序有20个线程执行,每个线程都是:打印字符串+sleep(1)。我们实际看到的结果是0到19同时打印,然后才sleep 1秒,但是需要注意的是,并非是20个线程才执行一次sleep(1),而是在每个线程中都执行了一次sleep(1),即该程序实际上是执行了20次sleep(1),而我们实际看到的结果是程序运行时仅仅是暂停了1秒,那是因为这20次sleep(1)是并发执行的。

    上面的程序可以这么去理解:20个线程相当于有20匹马,20匹马同时起跑(打印字符串),然后以同时停1秒(sleep(1)),最后同时到达终点(20个线程运行结束,即程序执行结束)。

    为了更好的理解上面的程序,可以把上面的代码改为如下:

1
2
3
4
5
6
7
8
9
10
11
import threading
import time
 
def run(num):
    print 'Hi, I am thread %s..lalala' % num
    time.sleep(1)
 
for in range(20):
    t = threading.Thread(target=run, args=(i,))
    t.start()
    t.join()    #等上一个线程执行完后再执行下一个线程

    执行结果如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
xpleaf@xpleaf-machine:/mnt/hgfs/Python/day6$ python thread4.py 
Hi, I am thread 0..lalala
Hi, I am thread 1..lalala
Hi, I am thread 2..lalala
Hi, I am thread 3..lalala
Hi, I am thread 4..lalala
Hi, I am thread 5..lalala
Hi, I am thread 6..lalala
Hi, I am thread 7..lalala
Hi, I am thread 8..lalala
Hi, I am thread 9..lalala
Hi, I am thread 10..lalala
Hi, I am thread 11..lalala
Hi, I am thread 12..lalala
Hi, I am thread 13..lalala
Hi, I am thread 14..lalala
Hi, I am thread 15..lalala
Hi, I am thread 16..lalala
Hi, I am thread 17..lalala
Hi, I am thread 18..lalala
Hi, I am thread 19..lalala

    执行结果看上去跟前面是一样的,但执行过程却是这样的:每打印一次字符串,再暂停一秒。

    通过这个程序,也就可以更好的理解Python的多线程并发执行了,当然,因为这是一个动态的过程,所以把程序执行一遍后会有更好的理解。

 

3.Python多线程使用方法2

    程序代码如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
import threading,time
 
class MyThread(threading.Thread):
    def __init__(self, num):
        threading.Thread.__init__(self)
        self.num = num
 
    def run(self): #this name must be 'run'
        print 'I am thread %s' % self.num
        time.sleep(2)
 
for in range(20):
    t = MyThread(i)
    t.start()

    程序的执行结果与方法1是一样的,这里就不给出了,只是这里利用了面向对象编程的思想方法来设计程序代码。

posted @ 2016-11-08 22:19  redis3389  阅读(372)  评论(0编辑  收藏  举报