阿里云工业蒸汽量预测

数据探索

导入工具包

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from scipy import stats

import warnings
warnings.filterwarnings('ignore')

%matplotlib inline

读取数据

train_data=pd.read_csv('data/zhengqi_train.txt',sep='\t',encoding='utf-8')
test_data=pd.read_csv('data/zhengqi_test.txt',sep='\t',encoding='utf-8')

train_data
V0 V1 V2 V3 V4 V5 V6 V7 V8 V9 ... V29 V30 V31 V32 V33 V34 V35 V36 V37 target
0 0.566 0.016 -0.143 0.407 0.452 -0.901 -1.812 -2.360 -0.436 -2.114 ... 0.136 0.109 -0.615 0.327 -4.627 -4.789 -5.101 -2.608 -3.508 0.175
1 0.968 0.437 0.066 0.566 0.194 -0.893 -1.566 -2.360 0.332 -2.114 ... -0.128 0.124 0.032 0.600 -0.843 0.160 0.364 -0.335 -0.730 0.676
2 1.013 0.568 0.235 0.370 0.112 -0.797 -1.367 -2.360 0.396 -2.114 ... -0.009 0.361 0.277 -0.116 -0.843 0.160 0.364 0.765 -0.589 0.633
3 0.733 0.368 0.283 0.165 0.599 -0.679 -1.200 -2.086 0.403 -2.114 ... 0.015 0.417 0.279 0.603 -0.843 -0.065 0.364 0.333 -0.112 0.206
4 0.684 0.638 0.260 0.209 0.337 -0.454 -1.073 -2.086 0.314 -2.114 ... 0.183 1.078 0.328 0.418 -0.843 -0.215 0.364 -0.280 -0.028 0.384
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
2883 0.190 -0.025 -0.138 0.161 0.600 -0.212 0.757 0.584 -0.026 0.904 ... 0.128 -0.208 0.809 -0.173 0.247 -0.027 -0.349 0.576 0.686 0.235
2884 0.507 0.557 0.296 0.183 0.530 -0.237 0.749 0.584 0.537 0.904 ... 0.291 -0.287 0.465 -0.310 0.763 0.498 -0.349 -0.615 -0.380 1.042
2885 -0.394 -0.721 -0.485 0.084 0.136 0.034 0.655 0.614 -0.818 0.904 ... 0.291 -0.179 0.268 0.552 0.763 0.498 -0.349 0.951 0.748 0.005
2886 -0.219 -0.282 -0.344 -0.049 0.449 -0.140 0.560 0.583 -0.596 0.904 ... 0.216 1.061 -0.051 1.023 0.878 0.610 -0.230 -0.301 0.555 0.350
2887 0.368 0.380 -0.225 -0.049 0.379 0.092 0.550 0.551 0.244 0.904 ... 0.047 0.057 -0.042 0.847 0.534 -0.009 -0.190 -0.567 0.388 0.417

2888 rows × 39 columns

查看数据

train_data.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 2888 entries, 0 to 2887
Data columns (total 39 columns):
 #   Column  Non-Null Count  Dtype  
---  ------  --------------  -----  
 0   V0      2888 non-null   float64
 1   V1      2888 non-null   float64
 2   V2      2888 non-null   float64
 3   V3      2888 non-null   float64
 4   V4      2888 non-null   float64
 5   V5      2888 non-null   float64
 6   V6      2888 non-null   float64
 7   V7      2888 non-null   float64
 8   V8      2888 non-null   float64
 9   V9      2888 non-null   float64
 10  V10     2888 non-null   float64
 11  V11     2888 non-null   float64
 12  V12     2888 non-null   float64
 13  V13     2888 non-null   float64
 14  V14     2888 non-null   float64
 15  V15     2888 non-null   float64
 16  V16     2888 non-null   float64
 17  V17     2888 non-null   float64
 18  V18     2888 non-null   float64
 19  V19     2888 non-null   float64
 20  V20     2888 non-null   float64
 21  V21     2888 non-null   float64
 22  V22     2888 non-null   float64
 23  V23     2888 non-null   float64
 24  V24     2888 non-null   float64
 25  V25     2888 non-null   float64
 26  V26     2888 non-null   float64
 27  V27     2888 non-null   float64
 28  V28     2888 non-null   float64
 29  V29     2888 non-null   float64
 30  V30     2888 non-null   float64
 31  V31     2888 non-null   float64
 32  V32     2888 non-null   float64
 33  V33     2888 non-null   float64
 34  V34     2888 non-null   float64
 35  V35     2888 non-null   float64
 36  V36     2888 non-null   float64
 37  V37     2888 non-null   float64
 38  target  2888 non-null   float64
dtypes: float64(39)
memory usage: 880.1 KB
train_data.describe().T
count mean std min 25% 50% 75% max
V0 2888.0 0.123048 0.928031 -4.335 -0.29700 0.3590 0.72600 2.121
V1 2888.0 0.056068 0.941515 -5.122 -0.22625 0.2725 0.59900 1.918
V2 2888.0 0.289720 0.911236 -3.420 -0.31300 0.3860 0.91825 2.828
V3 2888.0 -0.067790 0.970298 -3.956 -0.65225 -0.0445 0.62400 2.457
V4 2888.0 0.012921 0.888377 -4.742 -0.38500 0.1100 0.55025 2.689
V5 2888.0 -0.558565 0.517957 -2.182 -0.85300 -0.4660 -0.15400 0.489
V6 2888.0 0.182892 0.918054 -4.576 -0.31000 0.3880 0.83125 1.895
V7 2888.0 0.116155 0.955116 -5.048 -0.29500 0.3440 0.78225 1.918
V8 2888.0 0.177856 0.895444 -4.692 -0.15900 0.3620 0.72600 2.245
V9 2888.0 -0.169452 0.953813 -12.891 -0.39000 0.0420 0.04200 1.335
V10 2888.0 0.034319 0.968272 -2.584 -0.42050 0.1570 0.61925 4.830
V11 2888.0 -0.364465 0.858504 -3.160 -0.80325 -0.1120 0.24700 1.455
V12 2888.0 0.023177 0.894092 -5.165 -0.41900 0.1230 0.61600 2.657
V13 2888.0 0.195738 0.922757 -3.675 -0.39800 0.2895 0.86425 2.475
V14 2888.0 0.016081 1.015585 -2.455 -0.66800 -0.1610 0.82975 2.558
V15 2888.0 0.096146 1.033048 -2.903 -0.66225 -0.0005 0.73000 4.314
V16 2888.0 0.113505 0.983128 -5.981 -0.30000 0.3060 0.77425 2.861
V17 2888.0 -0.043458 0.655857 -2.224 -0.36600 0.1650 0.43000 2.023
V18 2888.0 0.055034 0.953466 -3.582 -0.36750 0.0820 0.51325 4.441
V19 2888.0 -0.114884 1.108859 -3.704 -0.98750 -0.0005 0.73725 3.431
V20 2888.0 -0.186226 0.788511 -3.402 -0.67550 -0.1565 0.30400 3.525
V21 2888.0 -0.056556 0.781471 -2.643 -0.51700 -0.0565 0.43150 2.259
V22 2888.0 0.302893 0.639186 -1.375 -0.06300 0.2165 0.87200 2.018
V23 2888.0 0.155978 0.978757 -5.542 0.09725 0.3380 0.36825 1.906
V24 2888.0 -0.021813 1.033403 -1.344 -1.19100 0.0950 0.93125 2.423
V25 2888.0 -0.051679 0.915957 -3.808 -0.55725 -0.0760 0.35600 7.284
V26 2888.0 0.072092 0.889771 -5.131 -0.45200 0.0750 0.64425 2.980
V27 2888.0 0.272407 0.270374 -1.164 0.15775 0.3250 0.44200 0.925
V28 2888.0 0.137712 0.929899 -2.435 -0.45500 -0.4470 0.73000 4.671
V29 2888.0 0.097648 1.061200 -2.912 -0.66400 -0.0230 0.74525 4.580
V30 2888.0 0.055477 0.901934 -4.507 -0.28300 0.0535 0.48800 2.689
V31 2888.0 0.127791 0.873028 -5.859 -0.17025 0.2995 0.63500 2.013
V32 2888.0 0.020806 0.902584 -4.053 -0.40725 0.0390 0.55700 2.395
V33 2888.0 0.007801 1.006995 -4.627 -0.49900 -0.0400 0.46200 5.465
V34 2888.0 0.006715 1.003291 -4.789 -0.29000 0.1600 0.27300 5.110
V35 2888.0 0.197764 0.985675 -5.695 -0.20250 0.3640 0.60200 2.324
V36 2888.0 0.030658 0.970812 -2.608 -0.41300 0.1370 0.64425 5.238
V37 2888.0 -0.130330 1.017196 -3.630 -0.79825 -0.1855 0.49525 3.000
target 2888.0 0.126353 0.983966 -3.044 -0.35025 0.3130 0.79325 2.538

可视化数据分布

箱线图

column=train_data.columns.tolist()[:39]

fig=plt.figure(figsize=(80,60),dpi=75)

for i in range(38):
    plt.subplot(7,8,i+1)
    sns.boxplot(train_data[column[i]],orient="v",width=0.5)
    plt.ylabel(column[i],fontsize=36)
plt.show()


png

获取异常数据并画图


直方图和Q-Q图

cols=6
rows=len(train_data.columns)

plt.figure(figsize=(4*cols,4*rows))

i=0

for col in train_data.columns:
    i+=1
    ax=plt.subplot(rows,cols,i)
    sns.distplot(train_data[col],fit=stats.norm)
    
    i+=1
    ax=plt.subplot(rows,cols,i)
    res=stats.probplot(train_data[col],plot=plt)

plt.tight_layout()
plt.show()


png

KDE分布图

cols=6
rows=len(test_data.columns)

plt.figure(figsize=(4*cols,4*rows))

i=1

for col in test_data.columns:
    ax=plt.subplot(rows,cols,i)
    ax=sns.kdeplot(train_data[col],color='red',shade=True)
    ax=sns.kdeplot(test_data[col],color='blue',shade=True)
    ax.set_xlabel(col)
    ax.set_ylabel("Frequency")
    ax=ax.legend(['train','test'])
    i+=1
plt.show()


png

线性回归关系图

cols=6
rows=len(test_data.columns)

plt.figure(figsize=(5*cols,4*rows))

i=0

for col in test_data.columns:
    i+=1
    ax=plt.subplot(rows,cols,i)
    sns.regplot(x=col,y='target',data=train_data,ax=ax,scatter_kws={'marker':'.','s':3,'alpha':0.3},line_kws={'color':'k'})
    plt.xlabel(col)
    plt.ylabel('target')
    
    i+=1
    ax=plt.subplot(rows,cols,i)
    sns.distplot(train_data[col].dropna())
    plt.xlabel(col)


png

查看特征变量的相关性

计算相关性系数

pd.set_option('display.max_columns',10)
pd.set_option('display.max_rows',10)

data_train1=train_data.drop(['V5','V9','V11','V17','V22','V28'],axis=1)

train_corr=data_train1.corr()
train_corr
V0 V1 V2 V3 V4 ... V34 V35 V36 V37 target
V0 1.000000 0.908607 0.463643 0.409576 0.781212 ... -0.019342 0.138933 0.231417 -0.494076 0.873212
V1 0.908607 1.000000 0.506514 0.383924 0.657790 ... -0.029115 0.146329 0.235299 -0.494043 0.871846
V2 0.463643 0.506514 1.000000 0.410148 0.057697 ... -0.025620 0.043648 0.316462 -0.734956 0.638878
V3 0.409576 0.383924 0.410148 1.000000 0.315046 ... -0.031898 0.080034 0.324475 -0.229613 0.512074
V4 0.781212 0.657790 0.057697 0.315046 1.000000 ... 0.028659 0.100010 0.113609 -0.031054 0.603984
... ... ... ... ... ... ... ... ... ... ... ...
V34 -0.019342 -0.029115 -0.025620 -0.031898 0.028659 ... 1.000000 0.233616 -0.019032 -0.006854 -0.006034
V35 0.138933 0.146329 0.043648 0.080034 0.100010 ... 0.233616 1.000000 0.025401 -0.077991 0.140294
V36 0.231417 0.235299 0.316462 0.324475 0.113609 ... -0.019032 0.025401 1.000000 -0.039478 0.319309
V37 -0.494076 -0.494043 -0.734956 -0.229613 -0.031054 ... -0.006854 -0.077991 -0.039478 1.000000 -0.565795
target 0.873212 0.871846 0.638878 0.512074 0.603984 ... -0.006034 0.140294 0.319309 -0.565795 1.000000

33 rows × 33 columns

相关性热力图

ax=plt.subplots(figsize=(20,16))
ax=sns.heatmap(train_corr,vmax=0.8,square=True,annot=True)


png

根据相关性系数筛选特征变量

k=10

cols=train_corr.nlargest(k,'target')['target'].index

hm=plt.subplots(figsize=(10,10))

hm=sns.heatmap(train_data[cols].corr(),annot=True,square=True)

plt.show()


png

Box-Cox变换

def scale_minmax(col):
    return (col-col.min())/(col.max()-col.min())

特征工程

数据预处理和特征处理

数据预处理

数据采集

数据清洗

数据采样

特征处理

标准化

from sklearn.preprocessing import StandardScaler
from sklearn.datasets import load_iris
x=load_iris().data
y=load_iris().target

StandardScaler().fit_transform(x)
array([[-9.00681170e-01,  1.01900435e+00, -1.34022653e+00,
        -1.31544430e+00],
       [-1.14301691e+00, -1.31979479e-01, -1.34022653e+00,
        -1.31544430e+00],
       [-1.38535265e+00,  3.28414053e-01, -1.39706395e+00,
        -1.31544430e+00],
       [-1.50652052e+00,  9.82172869e-02, -1.28338910e+00,
        -1.31544430e+00],
       [-1.02184904e+00,  1.24920112e+00, -1.34022653e+00,
        -1.31544430e+00],
       [-5.37177559e-01,  1.93979142e+00, -1.16971425e+00,
        -1.05217993e+00],
       [-1.50652052e+00,  7.88807586e-01, -1.34022653e+00,
        -1.18381211e+00],
       [-1.02184904e+00,  7.88807586e-01, -1.28338910e+00,
        -1.31544430e+00],
       [-1.74885626e+00, -3.62176246e-01, -1.34022653e+00,
        -1.31544430e+00],
       [-1.14301691e+00,  9.82172869e-02, -1.28338910e+00,
        -1.44707648e+00],
       [-5.37177559e-01,  1.47939788e+00, -1.28338910e+00,
        -1.31544430e+00],
       [-1.26418478e+00,  7.88807586e-01, -1.22655167e+00,
        -1.31544430e+00],
       [-1.26418478e+00, -1.31979479e-01, -1.34022653e+00,
        -1.44707648e+00],
       [-1.87002413e+00, -1.31979479e-01, -1.51073881e+00,
        -1.44707648e+00],
       [-5.25060772e-02,  2.16998818e+00, -1.45390138e+00,
        -1.31544430e+00],
       [-1.73673948e-01,  3.09077525e+00, -1.28338910e+00,
        -1.05217993e+00],
       [-5.37177559e-01,  1.93979142e+00, -1.39706395e+00,
        -1.05217993e+00],
       [-9.00681170e-01,  1.01900435e+00, -1.34022653e+00,
        -1.18381211e+00],
       [-1.73673948e-01,  1.70959465e+00, -1.16971425e+00,
        -1.18381211e+00],
       [-9.00681170e-01,  1.70959465e+00, -1.28338910e+00,
        -1.18381211e+00],
       [-5.37177559e-01,  7.88807586e-01, -1.16971425e+00,
        -1.31544430e+00],
       [-9.00681170e-01,  1.47939788e+00, -1.28338910e+00,
        -1.05217993e+00],
       [-1.50652052e+00,  1.24920112e+00, -1.56757623e+00,
        -1.31544430e+00],
       [-9.00681170e-01,  5.58610819e-01, -1.16971425e+00,
        -9.20547742e-01],
       [-1.26418478e+00,  7.88807586e-01, -1.05603939e+00,
        -1.31544430e+00],
       [-1.02184904e+00, -1.31979479e-01, -1.22655167e+00,
        -1.31544430e+00],
       [-1.02184904e+00,  7.88807586e-01, -1.22655167e+00,
        -1.05217993e+00],
       [-7.79513300e-01,  1.01900435e+00, -1.28338910e+00,
        -1.31544430e+00],
       [-7.79513300e-01,  7.88807586e-01, -1.34022653e+00,
        -1.31544430e+00],
       [-1.38535265e+00,  3.28414053e-01, -1.22655167e+00,
        -1.31544430e+00],
       [-1.26418478e+00,  9.82172869e-02, -1.22655167e+00,
        -1.31544430e+00],
       [-5.37177559e-01,  7.88807586e-01, -1.28338910e+00,
        -1.05217993e+00],
       [-7.79513300e-01,  2.40018495e+00, -1.28338910e+00,
        -1.44707648e+00],
       [-4.16009689e-01,  2.63038172e+00, -1.34022653e+00,
        -1.31544430e+00],
       [-1.14301691e+00,  9.82172869e-02, -1.28338910e+00,
        -1.31544430e+00],
       [-1.02184904e+00,  3.28414053e-01, -1.45390138e+00,
        -1.31544430e+00],
       [-4.16009689e-01,  1.01900435e+00, -1.39706395e+00,
        -1.31544430e+00],
       [-1.14301691e+00,  1.24920112e+00, -1.34022653e+00,
        -1.44707648e+00],
       [-1.74885626e+00, -1.31979479e-01, -1.39706395e+00,
        -1.31544430e+00],
       [-9.00681170e-01,  7.88807586e-01, -1.28338910e+00,
        -1.31544430e+00],
       [-1.02184904e+00,  1.01900435e+00, -1.39706395e+00,
        -1.18381211e+00],
       [-1.62768839e+00, -1.74335684e+00, -1.39706395e+00,
        -1.18381211e+00],
       [-1.74885626e+00,  3.28414053e-01, -1.39706395e+00,
        -1.31544430e+00],
       [-1.02184904e+00,  1.01900435e+00, -1.22655167e+00,
        -7.88915558e-01],
       [-9.00681170e-01,  1.70959465e+00, -1.05603939e+00,
        -1.05217993e+00],
       [-1.26418478e+00, -1.31979479e-01, -1.34022653e+00,
        -1.18381211e+00],
       [-9.00681170e-01,  1.70959465e+00, -1.22655167e+00,
        -1.31544430e+00],
       [-1.50652052e+00,  3.28414053e-01, -1.34022653e+00,
        -1.31544430e+00],
       [-6.58345429e-01,  1.47939788e+00, -1.28338910e+00,
        -1.31544430e+00],
       [-1.02184904e+00,  5.58610819e-01, -1.34022653e+00,
        -1.31544430e+00],
       [ 1.40150837e+00,  3.28414053e-01,  5.35408562e-01,
         2.64141916e-01],
       [ 6.74501145e-01,  3.28414053e-01,  4.21733708e-01,
         3.95774101e-01],
       [ 1.28034050e+00,  9.82172869e-02,  6.49083415e-01,
         3.95774101e-01],
       [-4.16009689e-01, -1.74335684e+00,  1.37546573e-01,
         1.32509732e-01],
       [ 7.95669016e-01, -5.92373012e-01,  4.78571135e-01,
         3.95774101e-01],
       [-1.73673948e-01, -5.92373012e-01,  4.21733708e-01,
         1.32509732e-01],
       [ 5.53333275e-01,  5.58610819e-01,  5.35408562e-01,
         5.27406285e-01],
       [-1.14301691e+00, -1.51316008e+00, -2.60315415e-01,
        -2.62386821e-01],
       [ 9.16836886e-01, -3.62176246e-01,  4.78571135e-01,
         1.32509732e-01],
       [-7.79513300e-01, -8.22569778e-01,  8.07091462e-02,
         2.64141916e-01],
       [-1.02184904e+00, -2.43394714e+00, -1.46640561e-01,
        -2.62386821e-01],
       [ 6.86617933e-02, -1.31979479e-01,  2.51221427e-01,
         3.95774101e-01],
       [ 1.89829664e-01, -1.97355361e+00,  1.37546573e-01,
        -2.62386821e-01],
       [ 3.10997534e-01, -3.62176246e-01,  5.35408562e-01,
         2.64141916e-01],
       [-2.94841818e-01, -3.62176246e-01, -8.98031345e-02,
         1.32509732e-01],
       [ 1.03800476e+00,  9.82172869e-02,  3.64896281e-01,
         2.64141916e-01],
       [-2.94841818e-01, -1.31979479e-01,  4.21733708e-01,
         3.95774101e-01],
       [-5.25060772e-02, -8.22569778e-01,  1.94384000e-01,
        -2.62386821e-01],
       [ 4.32165405e-01, -1.97355361e+00,  4.21733708e-01,
         3.95774101e-01],
       [-2.94841818e-01, -1.28296331e+00,  8.07091462e-02,
        -1.30754636e-01],
       [ 6.86617933e-02,  3.28414053e-01,  5.92245988e-01,
         7.90670654e-01],
       [ 3.10997534e-01, -5.92373012e-01,  1.37546573e-01,
         1.32509732e-01],
       [ 5.53333275e-01, -1.28296331e+00,  6.49083415e-01,
         3.95774101e-01],
       [ 3.10997534e-01, -5.92373012e-01,  5.35408562e-01,
         8.77547895e-04],
       [ 6.74501145e-01, -3.62176246e-01,  3.08058854e-01,
         1.32509732e-01],
       [ 9.16836886e-01, -1.31979479e-01,  3.64896281e-01,
         2.64141916e-01],
       [ 1.15917263e+00, -5.92373012e-01,  5.92245988e-01,
         2.64141916e-01],
       [ 1.03800476e+00, -1.31979479e-01,  7.05920842e-01,
         6.59038469e-01],
       [ 1.89829664e-01, -3.62176246e-01,  4.21733708e-01,
         3.95774101e-01],
       [-1.73673948e-01, -1.05276654e+00, -1.46640561e-01,
        -2.62386821e-01],
       [-4.16009689e-01, -1.51316008e+00,  2.38717193e-02,
        -1.30754636e-01],
       [-4.16009689e-01, -1.51316008e+00, -3.29657076e-02,
        -2.62386821e-01],
       [-5.25060772e-02, -8.22569778e-01,  8.07091462e-02,
         8.77547895e-04],
       [ 1.89829664e-01, -8.22569778e-01,  7.62758269e-01,
         5.27406285e-01],
       [-5.37177559e-01, -1.31979479e-01,  4.21733708e-01,
         3.95774101e-01],
       [ 1.89829664e-01,  7.88807586e-01,  4.21733708e-01,
         5.27406285e-01],
       [ 1.03800476e+00,  9.82172869e-02,  5.35408562e-01,
         3.95774101e-01],
       [ 5.53333275e-01, -1.74335684e+00,  3.64896281e-01,
         1.32509732e-01],
       [-2.94841818e-01, -1.31979479e-01,  1.94384000e-01,
         1.32509732e-01],
       [-4.16009689e-01, -1.28296331e+00,  1.37546573e-01,
         1.32509732e-01],
       [-4.16009689e-01, -1.05276654e+00,  3.64896281e-01,
         8.77547895e-04],
       [ 3.10997534e-01, -1.31979479e-01,  4.78571135e-01,
         2.64141916e-01],
       [-5.25060772e-02, -1.05276654e+00,  1.37546573e-01,
         8.77547895e-04],
       [-1.02184904e+00, -1.74335684e+00, -2.60315415e-01,
        -2.62386821e-01],
       [-2.94841818e-01, -8.22569778e-01,  2.51221427e-01,
         1.32509732e-01],
       [-1.73673948e-01, -1.31979479e-01,  2.51221427e-01,
         8.77547895e-04],
       [-1.73673948e-01, -3.62176246e-01,  2.51221427e-01,
         1.32509732e-01],
       [ 4.32165405e-01, -3.62176246e-01,  3.08058854e-01,
         1.32509732e-01],
       [-9.00681170e-01, -1.28296331e+00, -4.30827696e-01,
        -1.30754636e-01],
       [-1.73673948e-01, -5.92373012e-01,  1.94384000e-01,
         1.32509732e-01],
       [ 5.53333275e-01,  5.58610819e-01,  1.27429511e+00,
         1.71209594e+00],
       [-5.25060772e-02, -8.22569778e-01,  7.62758269e-01,
         9.22302838e-01],
       [ 1.52267624e+00, -1.31979479e-01,  1.21745768e+00,
         1.18556721e+00],
       [ 5.53333275e-01, -3.62176246e-01,  1.04694540e+00,
         7.90670654e-01],
       [ 7.95669016e-01, -1.31979479e-01,  1.16062026e+00,
         1.31719939e+00],
       [ 2.12851559e+00, -1.31979479e-01,  1.61531967e+00,
         1.18556721e+00],
       [-1.14301691e+00, -1.28296331e+00,  4.21733708e-01,
         6.59038469e-01],
       [ 1.76501198e+00, -3.62176246e-01,  1.44480739e+00,
         7.90670654e-01],
       [ 1.03800476e+00, -1.28296331e+00,  1.16062026e+00,
         7.90670654e-01],
       [ 1.64384411e+00,  1.24920112e+00,  1.33113254e+00,
         1.71209594e+00],
       [ 7.95669016e-01,  3.28414053e-01,  7.62758269e-01,
         1.05393502e+00],
       [ 6.74501145e-01, -8.22569778e-01,  8.76433123e-01,
         9.22302838e-01],
       [ 1.15917263e+00, -1.31979479e-01,  9.90107977e-01,
         1.18556721e+00],
       [-1.73673948e-01, -1.28296331e+00,  7.05920842e-01,
         1.05393502e+00],
       [-5.25060772e-02, -5.92373012e-01,  7.62758269e-01,
         1.58046376e+00],
       [ 6.74501145e-01,  3.28414053e-01,  8.76433123e-01,
         1.44883158e+00],
       [ 7.95669016e-01, -1.31979479e-01,  9.90107977e-01,
         7.90670654e-01],
       [ 2.24968346e+00,  1.70959465e+00,  1.67215710e+00,
         1.31719939e+00],
       [ 2.24968346e+00, -1.05276654e+00,  1.78583195e+00,
         1.44883158e+00],
       [ 1.89829664e-01, -1.97355361e+00,  7.05920842e-01,
         3.95774101e-01],
       [ 1.28034050e+00,  3.28414053e-01,  1.10378283e+00,
         1.44883158e+00],
       [-2.94841818e-01, -5.92373012e-01,  6.49083415e-01,
         1.05393502e+00],
       [ 2.24968346e+00, -5.92373012e-01,  1.67215710e+00,
         1.05393502e+00],
       [ 5.53333275e-01, -8.22569778e-01,  6.49083415e-01,
         7.90670654e-01],
       [ 1.03800476e+00,  5.58610819e-01,  1.10378283e+00,
         1.18556721e+00],
       [ 1.64384411e+00,  3.28414053e-01,  1.27429511e+00,
         7.90670654e-01],
       [ 4.32165405e-01, -5.92373012e-01,  5.92245988e-01,
         7.90670654e-01],
       [ 3.10997534e-01, -1.31979479e-01,  6.49083415e-01,
         7.90670654e-01],
       [ 6.74501145e-01, -5.92373012e-01,  1.04694540e+00,
         1.18556721e+00],
       [ 1.64384411e+00, -1.31979479e-01,  1.16062026e+00,
         5.27406285e-01],
       [ 1.88617985e+00, -5.92373012e-01,  1.33113254e+00,
         9.22302838e-01],
       [ 2.49201920e+00,  1.70959465e+00,  1.50164482e+00,
         1.05393502e+00],
       [ 6.74501145e-01, -5.92373012e-01,  1.04694540e+00,
         1.31719939e+00],
       [ 5.53333275e-01, -5.92373012e-01,  7.62758269e-01,
         3.95774101e-01],
       [ 3.10997534e-01, -1.05276654e+00,  1.04694540e+00,
         2.64141916e-01],
       [ 2.24968346e+00, -1.31979479e-01,  1.33113254e+00,
         1.44883158e+00],
       [ 5.53333275e-01,  7.88807586e-01,  1.04694540e+00,
         1.58046376e+00],
       [ 6.74501145e-01,  9.82172869e-02,  9.90107977e-01,
         7.90670654e-01],
       [ 1.89829664e-01, -1.31979479e-01,  5.92245988e-01,
         7.90670654e-01],
       [ 1.28034050e+00,  9.82172869e-02,  9.33270550e-01,
         1.18556721e+00],
       [ 1.03800476e+00,  9.82172869e-02,  1.04694540e+00,
         1.58046376e+00],
       [ 1.28034050e+00,  9.82172869e-02,  7.62758269e-01,
         1.44883158e+00],
       [-5.25060772e-02, -8.22569778e-01,  7.62758269e-01,
         9.22302838e-01],
       [ 1.15917263e+00,  3.28414053e-01,  1.21745768e+00,
         1.44883158e+00],
       [ 1.03800476e+00,  5.58610819e-01,  1.10378283e+00,
         1.71209594e+00],
       [ 1.03800476e+00, -1.31979479e-01,  8.19595696e-01,
         1.44883158e+00],
       [ 5.53333275e-01, -1.28296331e+00,  7.05920842e-01,
         9.22302838e-01],
       [ 7.95669016e-01, -1.31979479e-01,  8.19595696e-01,
         1.05393502e+00],
       [ 4.32165405e-01,  7.88807586e-01,  9.33270550e-01,
         1.44883158e+00],
       [ 6.86617933e-02, -1.31979479e-01,  7.62758269e-01,
         7.90670654e-01]])
(x-x.mean(axis=0))/x.std(axis=0)
array([[-9.00681170e-01,  1.01900435e+00, -1.34022653e+00,
        -1.31544430e+00],
       [-1.14301691e+00, -1.31979479e-01, -1.34022653e+00,
        -1.31544430e+00],
       [-1.38535265e+00,  3.28414053e-01, -1.39706395e+00,
        -1.31544430e+00],
       [-1.50652052e+00,  9.82172869e-02, -1.28338910e+00,
        -1.31544430e+00],
       [-1.02184904e+00,  1.24920112e+00, -1.34022653e+00,
        -1.31544430e+00],
       [-5.37177559e-01,  1.93979142e+00, -1.16971425e+00,
        -1.05217993e+00],
       [-1.50652052e+00,  7.88807586e-01, -1.34022653e+00,
        -1.18381211e+00],
       [-1.02184904e+00,  7.88807586e-01, -1.28338910e+00,
        -1.31544430e+00],
       [-1.74885626e+00, -3.62176246e-01, -1.34022653e+00,
        -1.31544430e+00],
       [-1.14301691e+00,  9.82172869e-02, -1.28338910e+00,
        -1.44707648e+00],
       [-5.37177559e-01,  1.47939788e+00, -1.28338910e+00,
        -1.31544430e+00],
       [-1.26418478e+00,  7.88807586e-01, -1.22655167e+00,
        -1.31544430e+00],
       [-1.26418478e+00, -1.31979479e-01, -1.34022653e+00,
        -1.44707648e+00],
       [-1.87002413e+00, -1.31979479e-01, -1.51073881e+00,
        -1.44707648e+00],
       [-5.25060772e-02,  2.16998818e+00, -1.45390138e+00,
        -1.31544430e+00],
       [-1.73673948e-01,  3.09077525e+00, -1.28338910e+00,
        -1.05217993e+00],
       [-5.37177559e-01,  1.93979142e+00, -1.39706395e+00,
        -1.05217993e+00],
       [-9.00681170e-01,  1.01900435e+00, -1.34022653e+00,
        -1.18381211e+00],
       [-1.73673948e-01,  1.70959465e+00, -1.16971425e+00,
        -1.18381211e+00],
       [-9.00681170e-01,  1.70959465e+00, -1.28338910e+00,
        -1.18381211e+00],
       [-5.37177559e-01,  7.88807586e-01, -1.16971425e+00,
        -1.31544430e+00],
       [-9.00681170e-01,  1.47939788e+00, -1.28338910e+00,
        -1.05217993e+00],
       [-1.50652052e+00,  1.24920112e+00, -1.56757623e+00,
        -1.31544430e+00],
       [-9.00681170e-01,  5.58610819e-01, -1.16971425e+00,
        -9.20547742e-01],
       [-1.26418478e+00,  7.88807586e-01, -1.05603939e+00,
        -1.31544430e+00],
       [-1.02184904e+00, -1.31979479e-01, -1.22655167e+00,
        -1.31544430e+00],
       [-1.02184904e+00,  7.88807586e-01, -1.22655167e+00,
        -1.05217993e+00],
       [-7.79513300e-01,  1.01900435e+00, -1.28338910e+00,
        -1.31544430e+00],
       [-7.79513300e-01,  7.88807586e-01, -1.34022653e+00,
        -1.31544430e+00],
       [-1.38535265e+00,  3.28414053e-01, -1.22655167e+00,
        -1.31544430e+00],
       [-1.26418478e+00,  9.82172869e-02, -1.22655167e+00,
        -1.31544430e+00],
       [-5.37177559e-01,  7.88807586e-01, -1.28338910e+00,
        -1.05217993e+00],
       [-7.79513300e-01,  2.40018495e+00, -1.28338910e+00,
        -1.44707648e+00],
       [-4.16009689e-01,  2.63038172e+00, -1.34022653e+00,
        -1.31544430e+00],
       [-1.14301691e+00,  9.82172869e-02, -1.28338910e+00,
        -1.31544430e+00],
       [-1.02184904e+00,  3.28414053e-01, -1.45390138e+00,
        -1.31544430e+00],
       [-4.16009689e-01,  1.01900435e+00, -1.39706395e+00,
        -1.31544430e+00],
       [-1.14301691e+00,  1.24920112e+00, -1.34022653e+00,
        -1.44707648e+00],
       [-1.74885626e+00, -1.31979479e-01, -1.39706395e+00,
        -1.31544430e+00],
       [-9.00681170e-01,  7.88807586e-01, -1.28338910e+00,
        -1.31544430e+00],
       [-1.02184904e+00,  1.01900435e+00, -1.39706395e+00,
        -1.18381211e+00],
       [-1.62768839e+00, -1.74335684e+00, -1.39706395e+00,
        -1.18381211e+00],
       [-1.74885626e+00,  3.28414053e-01, -1.39706395e+00,
        -1.31544430e+00],
       [-1.02184904e+00,  1.01900435e+00, -1.22655167e+00,
        -7.88915558e-01],
       [-9.00681170e-01,  1.70959465e+00, -1.05603939e+00,
        -1.05217993e+00],
       [-1.26418478e+00, -1.31979479e-01, -1.34022653e+00,
        -1.18381211e+00],
       [-9.00681170e-01,  1.70959465e+00, -1.22655167e+00,
        -1.31544430e+00],
       [-1.50652052e+00,  3.28414053e-01, -1.34022653e+00,
        -1.31544430e+00],
       [-6.58345429e-01,  1.47939788e+00, -1.28338910e+00,
        -1.31544430e+00],
       [-1.02184904e+00,  5.58610819e-01, -1.34022653e+00,
        -1.31544430e+00],
       [ 1.40150837e+00,  3.28414053e-01,  5.35408562e-01,
         2.64141916e-01],
       [ 6.74501145e-01,  3.28414053e-01,  4.21733708e-01,
         3.95774101e-01],
       [ 1.28034050e+00,  9.82172869e-02,  6.49083415e-01,
         3.95774101e-01],
       [-4.16009689e-01, -1.74335684e+00,  1.37546573e-01,
         1.32509732e-01],
       [ 7.95669016e-01, -5.92373012e-01,  4.78571135e-01,
         3.95774101e-01],
       [-1.73673948e-01, -5.92373012e-01,  4.21733708e-01,
         1.32509732e-01],
       [ 5.53333275e-01,  5.58610819e-01,  5.35408562e-01,
         5.27406285e-01],
       [-1.14301691e+00, -1.51316008e+00, -2.60315415e-01,
        -2.62386821e-01],
       [ 9.16836886e-01, -3.62176246e-01,  4.78571135e-01,
         1.32509732e-01],
       [-7.79513300e-01, -8.22569778e-01,  8.07091462e-02,
         2.64141916e-01],
       [-1.02184904e+00, -2.43394714e+00, -1.46640561e-01,
        -2.62386821e-01],
       [ 6.86617933e-02, -1.31979479e-01,  2.51221427e-01,
         3.95774101e-01],
       [ 1.89829664e-01, -1.97355361e+00,  1.37546573e-01,
        -2.62386821e-01],
       [ 3.10997534e-01, -3.62176246e-01,  5.35408562e-01,
         2.64141916e-01],
       [-2.94841818e-01, -3.62176246e-01, -8.98031345e-02,
         1.32509732e-01],
       [ 1.03800476e+00,  9.82172869e-02,  3.64896281e-01,
         2.64141916e-01],
       [-2.94841818e-01, -1.31979479e-01,  4.21733708e-01,
         3.95774101e-01],
       [-5.25060772e-02, -8.22569778e-01,  1.94384000e-01,
        -2.62386821e-01],
       [ 4.32165405e-01, -1.97355361e+00,  4.21733708e-01,
         3.95774101e-01],
       [-2.94841818e-01, -1.28296331e+00,  8.07091462e-02,
        -1.30754636e-01],
       [ 6.86617933e-02,  3.28414053e-01,  5.92245988e-01,
         7.90670654e-01],
       [ 3.10997534e-01, -5.92373012e-01,  1.37546573e-01,
         1.32509732e-01],
       [ 5.53333275e-01, -1.28296331e+00,  6.49083415e-01,
         3.95774101e-01],
       [ 3.10997534e-01, -5.92373012e-01,  5.35408562e-01,
         8.77547895e-04],
       [ 6.74501145e-01, -3.62176246e-01,  3.08058854e-01,
         1.32509732e-01],
       [ 9.16836886e-01, -1.31979479e-01,  3.64896281e-01,
         2.64141916e-01],
       [ 1.15917263e+00, -5.92373012e-01,  5.92245988e-01,
         2.64141916e-01],
       [ 1.03800476e+00, -1.31979479e-01,  7.05920842e-01,
         6.59038469e-01],
       [ 1.89829664e-01, -3.62176246e-01,  4.21733708e-01,
         3.95774101e-01],
       [-1.73673948e-01, -1.05276654e+00, -1.46640561e-01,
        -2.62386821e-01],
       [-4.16009689e-01, -1.51316008e+00,  2.38717193e-02,
        -1.30754636e-01],
       [-4.16009689e-01, -1.51316008e+00, -3.29657076e-02,
        -2.62386821e-01],
       [-5.25060772e-02, -8.22569778e-01,  8.07091462e-02,
         8.77547895e-04],
       [ 1.89829664e-01, -8.22569778e-01,  7.62758269e-01,
         5.27406285e-01],
       [-5.37177559e-01, -1.31979479e-01,  4.21733708e-01,
         3.95774101e-01],
       [ 1.89829664e-01,  7.88807586e-01,  4.21733708e-01,
         5.27406285e-01],
       [ 1.03800476e+00,  9.82172869e-02,  5.35408562e-01,
         3.95774101e-01],
       [ 5.53333275e-01, -1.74335684e+00,  3.64896281e-01,
         1.32509732e-01],
       [-2.94841818e-01, -1.31979479e-01,  1.94384000e-01,
         1.32509732e-01],
       [-4.16009689e-01, -1.28296331e+00,  1.37546573e-01,
         1.32509732e-01],
       [-4.16009689e-01, -1.05276654e+00,  3.64896281e-01,
         8.77547895e-04],
       [ 3.10997534e-01, -1.31979479e-01,  4.78571135e-01,
         2.64141916e-01],
       [-5.25060772e-02, -1.05276654e+00,  1.37546573e-01,
         8.77547895e-04],
       [-1.02184904e+00, -1.74335684e+00, -2.60315415e-01,
        -2.62386821e-01],
       [-2.94841818e-01, -8.22569778e-01,  2.51221427e-01,
         1.32509732e-01],
       [-1.73673948e-01, -1.31979479e-01,  2.51221427e-01,
         8.77547895e-04],
       [-1.73673948e-01, -3.62176246e-01,  2.51221427e-01,
         1.32509732e-01],
       [ 4.32165405e-01, -3.62176246e-01,  3.08058854e-01,
         1.32509732e-01],
       [-9.00681170e-01, -1.28296331e+00, -4.30827696e-01,
        -1.30754636e-01],
       [-1.73673948e-01, -5.92373012e-01,  1.94384000e-01,
         1.32509732e-01],
       [ 5.53333275e-01,  5.58610819e-01,  1.27429511e+00,
         1.71209594e+00],
       [-5.25060772e-02, -8.22569778e-01,  7.62758269e-01,
         9.22302838e-01],
       [ 1.52267624e+00, -1.31979479e-01,  1.21745768e+00,
         1.18556721e+00],
       [ 5.53333275e-01, -3.62176246e-01,  1.04694540e+00,
         7.90670654e-01],
       [ 7.95669016e-01, -1.31979479e-01,  1.16062026e+00,
         1.31719939e+00],
       [ 2.12851559e+00, -1.31979479e-01,  1.61531967e+00,
         1.18556721e+00],
       [-1.14301691e+00, -1.28296331e+00,  4.21733708e-01,
         6.59038469e-01],
       [ 1.76501198e+00, -3.62176246e-01,  1.44480739e+00,
         7.90670654e-01],
       [ 1.03800476e+00, -1.28296331e+00,  1.16062026e+00,
         7.90670654e-01],
       [ 1.64384411e+00,  1.24920112e+00,  1.33113254e+00,
         1.71209594e+00],
       [ 7.95669016e-01,  3.28414053e-01,  7.62758269e-01,
         1.05393502e+00],
       [ 6.74501145e-01, -8.22569778e-01,  8.76433123e-01,
         9.22302838e-01],
       [ 1.15917263e+00, -1.31979479e-01,  9.90107977e-01,
         1.18556721e+00],
       [-1.73673948e-01, -1.28296331e+00,  7.05920842e-01,
         1.05393502e+00],
       [-5.25060772e-02, -5.92373012e-01,  7.62758269e-01,
         1.58046376e+00],
       [ 6.74501145e-01,  3.28414053e-01,  8.76433123e-01,
         1.44883158e+00],
       [ 7.95669016e-01, -1.31979479e-01,  9.90107977e-01,
         7.90670654e-01],
       [ 2.24968346e+00,  1.70959465e+00,  1.67215710e+00,
         1.31719939e+00],
       [ 2.24968346e+00, -1.05276654e+00,  1.78583195e+00,
         1.44883158e+00],
       [ 1.89829664e-01, -1.97355361e+00,  7.05920842e-01,
         3.95774101e-01],
       [ 1.28034050e+00,  3.28414053e-01,  1.10378283e+00,
         1.44883158e+00],
       [-2.94841818e-01, -5.92373012e-01,  6.49083415e-01,
         1.05393502e+00],
       [ 2.24968346e+00, -5.92373012e-01,  1.67215710e+00,
         1.05393502e+00],
       [ 5.53333275e-01, -8.22569778e-01,  6.49083415e-01,
         7.90670654e-01],
       [ 1.03800476e+00,  5.58610819e-01,  1.10378283e+00,
         1.18556721e+00],
       [ 1.64384411e+00,  3.28414053e-01,  1.27429511e+00,
         7.90670654e-01],
       [ 4.32165405e-01, -5.92373012e-01,  5.92245988e-01,
         7.90670654e-01],
       [ 3.10997534e-01, -1.31979479e-01,  6.49083415e-01,
         7.90670654e-01],
       [ 6.74501145e-01, -5.92373012e-01,  1.04694540e+00,
         1.18556721e+00],
       [ 1.64384411e+00, -1.31979479e-01,  1.16062026e+00,
         5.27406285e-01],
       [ 1.88617985e+00, -5.92373012e-01,  1.33113254e+00,
         9.22302838e-01],
       [ 2.49201920e+00,  1.70959465e+00,  1.50164482e+00,
         1.05393502e+00],
       [ 6.74501145e-01, -5.92373012e-01,  1.04694540e+00,
         1.31719939e+00],
       [ 5.53333275e-01, -5.92373012e-01,  7.62758269e-01,
         3.95774101e-01],
       [ 3.10997534e-01, -1.05276654e+00,  1.04694540e+00,
         2.64141916e-01],
       [ 2.24968346e+00, -1.31979479e-01,  1.33113254e+00,
         1.44883158e+00],
       [ 5.53333275e-01,  7.88807586e-01,  1.04694540e+00,
         1.58046376e+00],
       [ 6.74501145e-01,  9.82172869e-02,  9.90107977e-01,
         7.90670654e-01],
       [ 1.89829664e-01, -1.31979479e-01,  5.92245988e-01,
         7.90670654e-01],
       [ 1.28034050e+00,  9.82172869e-02,  9.33270550e-01,
         1.18556721e+00],
       [ 1.03800476e+00,  9.82172869e-02,  1.04694540e+00,
         1.58046376e+00],
       [ 1.28034050e+00,  9.82172869e-02,  7.62758269e-01,
         1.44883158e+00],
       [-5.25060772e-02, -8.22569778e-01,  7.62758269e-01,
         9.22302838e-01],
       [ 1.15917263e+00,  3.28414053e-01,  1.21745768e+00,
         1.44883158e+00],
       [ 1.03800476e+00,  5.58610819e-01,  1.10378283e+00,
         1.71209594e+00],
       [ 1.03800476e+00, -1.31979479e-01,  8.19595696e-01,
         1.44883158e+00],
       [ 5.53333275e-01, -1.28296331e+00,  7.05920842e-01,
         9.22302838e-01],
       [ 7.95669016e-01, -1.31979479e-01,  8.19595696e-01,
         1.05393502e+00],
       [ 4.32165405e-01,  7.88807586e-01,  9.33270550e-01,
         1.44883158e+00],
       [ 6.86617933e-02, -1.31979479e-01,  7.62758269e-01,
         7.90670654e-01]])

区间缩放法

from sklearn.preprocessing import MinMaxScaler

MinMaxScaler(feature_range=(1,5)).fit_transform(x)
array([[1.88888889, 3.5       , 1.27118644, 1.16666667],
       [1.66666667, 2.66666667, 1.27118644, 1.16666667],
       [1.44444444, 3.        , 1.20338983, 1.16666667],
       [1.33333333, 2.83333333, 1.33898305, 1.16666667],
       [1.77777778, 3.66666667, 1.27118644, 1.16666667],
       [2.22222222, 4.16666667, 1.47457627, 1.5       ],
       [1.33333333, 3.33333333, 1.27118644, 1.33333333],
       [1.77777778, 3.33333333, 1.33898305, 1.16666667],
       [1.11111111, 2.5       , 1.27118644, 1.16666667],
       [1.66666667, 2.83333333, 1.33898305, 1.        ],
       [2.22222222, 3.83333333, 1.33898305, 1.16666667],
       [1.55555556, 3.33333333, 1.40677966, 1.16666667],
       [1.55555556, 2.66666667, 1.27118644, 1.        ],
       [1.        , 2.66666667, 1.06779661, 1.        ],
       [2.66666667, 4.33333333, 1.13559322, 1.16666667],
       [2.55555556, 5.        , 1.33898305, 1.5       ],
       [2.22222222, 4.16666667, 1.20338983, 1.5       ],
       [1.88888889, 3.5       , 1.27118644, 1.33333333],
       [2.55555556, 4.        , 1.47457627, 1.33333333],
       [1.88888889, 4.        , 1.33898305, 1.33333333],
       [2.22222222, 3.33333333, 1.47457627, 1.16666667],
       [1.88888889, 3.83333333, 1.33898305, 1.5       ],
       [1.33333333, 3.66666667, 1.        , 1.16666667],
       [1.88888889, 3.16666667, 1.47457627, 1.66666667],
       [1.55555556, 3.33333333, 1.61016949, 1.16666667],
       [1.77777778, 2.66666667, 1.40677966, 1.16666667],
       [1.77777778, 3.33333333, 1.40677966, 1.5       ],
       [2.        , 3.5       , 1.33898305, 1.16666667],
       [2.        , 3.33333333, 1.27118644, 1.16666667],
       [1.44444444, 3.        , 1.40677966, 1.16666667],
       [1.55555556, 2.83333333, 1.40677966, 1.16666667],
       [2.22222222, 3.33333333, 1.33898305, 1.5       ],
       [2.        , 4.5       , 1.33898305, 1.        ],
       [2.33333333, 4.66666667, 1.27118644, 1.16666667],
       [1.66666667, 2.83333333, 1.33898305, 1.16666667],
       [1.77777778, 3.        , 1.13559322, 1.16666667],
       [2.33333333, 3.5       , 1.20338983, 1.16666667],
       [1.66666667, 3.66666667, 1.27118644, 1.        ],
       [1.11111111, 2.66666667, 1.20338983, 1.16666667],
       [1.88888889, 3.33333333, 1.33898305, 1.16666667],
       [1.77777778, 3.5       , 1.20338983, 1.33333333],
       [1.22222222, 1.5       , 1.20338983, 1.33333333],
       [1.11111111, 3.        , 1.20338983, 1.16666667],
       [1.77777778, 3.5       , 1.40677966, 1.83333333],
       [1.88888889, 4.        , 1.61016949, 1.5       ],
       [1.55555556, 2.66666667, 1.27118644, 1.33333333],
       [1.88888889, 4.        , 1.40677966, 1.16666667],
       [1.33333333, 3.        , 1.27118644, 1.16666667],
       [2.11111111, 3.83333333, 1.33898305, 1.16666667],
       [1.77777778, 3.16666667, 1.27118644, 1.16666667],
       [4.        , 3.        , 3.50847458, 3.16666667],
       [3.33333333, 3.        , 3.37288136, 3.33333333],
       [3.88888889, 2.83333333, 3.6440678 , 3.33333333],
       [2.33333333, 1.5       , 3.03389831, 3.        ],
       [3.44444444, 2.33333333, 3.44067797, 3.33333333],
       [2.55555556, 2.33333333, 3.37288136, 3.        ],
       [3.22222222, 3.16666667, 3.50847458, 3.5       ],
       [1.66666667, 1.66666667, 2.55932203, 2.5       ],
       [3.55555556, 2.5       , 3.44067797, 3.        ],
       [2.        , 2.16666667, 2.96610169, 3.16666667],
       [1.77777778, 1.        , 2.69491525, 2.5       ],
       [2.77777778, 2.66666667, 3.16949153, 3.33333333],
       [2.88888889, 1.33333333, 3.03389831, 2.5       ],
       [3.        , 2.5       , 3.50847458, 3.16666667],
       [2.44444444, 2.5       , 2.76271186, 3.        ],
       [3.66666667, 2.83333333, 3.30508475, 3.16666667],
       [2.44444444, 2.66666667, 3.37288136, 3.33333333],
       [2.66666667, 2.16666667, 3.10169492, 2.5       ],
       [3.11111111, 1.33333333, 3.37288136, 3.33333333],
       [2.44444444, 1.83333333, 2.96610169, 2.66666667],
       [2.77777778, 3.        , 3.57627119, 3.83333333],
       [3.        , 2.33333333, 3.03389831, 3.        ],
       [3.22222222, 1.83333333, 3.6440678 , 3.33333333],
       [3.        , 2.33333333, 3.50847458, 2.83333333],
       [3.33333333, 2.5       , 3.23728814, 3.        ],
       [3.55555556, 2.66666667, 3.30508475, 3.16666667],
       [3.77777778, 2.33333333, 3.57627119, 3.16666667],
       [3.66666667, 2.66666667, 3.71186441, 3.66666667],
       [2.88888889, 2.5       , 3.37288136, 3.33333333],
       [2.55555556, 2.        , 2.69491525, 2.5       ],
       [2.33333333, 1.66666667, 2.89830508, 2.66666667],
       [2.33333333, 1.66666667, 2.83050847, 2.5       ],
       [2.66666667, 2.16666667, 2.96610169, 2.83333333],
       [2.88888889, 2.16666667, 3.77966102, 3.5       ],
       [2.22222222, 2.66666667, 3.37288136, 3.33333333],
       [2.88888889, 3.33333333, 3.37288136, 3.5       ],
       [3.66666667, 2.83333333, 3.50847458, 3.33333333],
       [3.22222222, 1.5       , 3.30508475, 3.        ],
       [2.44444444, 2.66666667, 3.10169492, 3.        ],
       [2.33333333, 1.83333333, 3.03389831, 3.        ],
       [2.33333333, 2.        , 3.30508475, 2.83333333],
       [3.        , 2.66666667, 3.44067797, 3.16666667],
       [2.66666667, 2.        , 3.03389831, 2.83333333],
       [1.77777778, 1.5       , 2.55932203, 2.5       ],
       [2.44444444, 2.16666667, 3.16949153, 3.        ],
       [2.55555556, 2.66666667, 3.16949153, 2.83333333],
       [2.55555556, 2.5       , 3.16949153, 3.        ],
       [3.11111111, 2.5       , 3.23728814, 3.        ],
       [1.88888889, 1.83333333, 2.3559322 , 2.66666667],
       [2.55555556, 2.33333333, 3.10169492, 3.        ],
       [3.22222222, 3.16666667, 4.38983051, 5.        ],
       [2.66666667, 2.16666667, 3.77966102, 4.        ],
       [4.11111111, 2.66666667, 4.3220339 , 4.33333333],
       [3.22222222, 2.5       , 4.11864407, 3.83333333],
       [3.44444444, 2.66666667, 4.25423729, 4.5       ],
       [4.66666667, 2.66666667, 4.79661017, 4.33333333],
       [1.66666667, 1.83333333, 3.37288136, 3.66666667],
       [4.33333333, 2.5       , 4.59322034, 3.83333333],
       [3.66666667, 1.83333333, 4.25423729, 3.83333333],
       [4.22222222, 3.66666667, 4.45762712, 5.        ],
       [3.44444444, 3.        , 3.77966102, 4.16666667],
       [3.33333333, 2.16666667, 3.91525424, 4.        ],
       [3.77777778, 2.66666667, 4.05084746, 4.33333333],
       [2.55555556, 1.83333333, 3.71186441, 4.16666667],
       [2.66666667, 2.33333333, 3.77966102, 4.83333333],
       [3.33333333, 3.        , 3.91525424, 4.66666667],
       [3.44444444, 2.66666667, 4.05084746, 3.83333333],
       [4.77777778, 4.        , 4.86440678, 4.5       ],
       [4.77777778, 2.        , 5.        , 4.66666667],
       [2.88888889, 1.33333333, 3.71186441, 3.33333333],
       [3.88888889, 3.        , 4.18644068, 4.66666667],
       [2.44444444, 2.33333333, 3.6440678 , 4.16666667],
       [4.77777778, 2.33333333, 4.86440678, 4.16666667],
       [3.22222222, 2.16666667, 3.6440678 , 3.83333333],
       [3.66666667, 3.16666667, 4.18644068, 4.33333333],
       [4.22222222, 3.        , 4.38983051, 3.83333333],
       [3.11111111, 2.33333333, 3.57627119, 3.83333333],
       [3.        , 2.66666667, 3.6440678 , 3.83333333],
       [3.33333333, 2.33333333, 4.11864407, 4.33333333],
       [4.22222222, 2.66666667, 4.25423729, 3.5       ],
       [4.44444444, 2.33333333, 4.45762712, 4.        ],
       [5.        , 4.        , 4.66101695, 4.16666667],
       [3.33333333, 2.33333333, 4.11864407, 4.5       ],
       [3.22222222, 2.33333333, 3.77966102, 3.33333333],
       [3.        , 2.        , 4.11864407, 3.16666667],
       [4.77777778, 2.66666667, 4.45762712, 4.66666667],
       [3.22222222, 3.33333333, 4.11864407, 4.83333333],
       [3.33333333, 2.83333333, 4.05084746, 3.83333333],
       [2.88888889, 2.66666667, 3.57627119, 3.83333333],
       [3.88888889, 2.83333333, 3.98305085, 4.33333333],
       [3.66666667, 2.83333333, 4.11864407, 4.83333333],
       [3.88888889, 2.83333333, 3.77966102, 4.66666667],
       [2.66666667, 2.16666667, 3.77966102, 4.        ],
       [3.77777778, 3.        , 4.3220339 , 4.66666667],
       [3.66666667, 3.16666667, 4.18644068, 5.        ],
       [3.66666667, 2.66666667, 3.84745763, 4.66666667],
       [3.22222222, 1.83333333, 3.71186441, 4.        ],
       [3.44444444, 2.66666667, 3.84745763, 4.16666667],
       [3.11111111, 3.33333333, 3.98305085, 4.66666667],
       [2.77777778, 2.66666667, 3.77966102, 3.83333333]])

归一化

from sklearn.preprocessing import Normalizer

Normalizer().fit_transform(x)
array([[0.80377277, 0.55160877, 0.22064351, 0.0315205 ],
       [0.82813287, 0.50702013, 0.23660939, 0.03380134],
       [0.80533308, 0.54831188, 0.2227517 , 0.03426949],
       [0.80003025, 0.53915082, 0.26087943, 0.03478392],
       [0.790965  , 0.5694948 , 0.2214702 , 0.0316386 ],
       [0.78417499, 0.5663486 , 0.2468699 , 0.05808704],
       [0.78010936, 0.57660257, 0.23742459, 0.0508767 ],
       [0.80218492, 0.54548574, 0.24065548, 0.0320874 ],
       [0.80642366, 0.5315065 , 0.25658935, 0.03665562],
       [0.81803119, 0.51752994, 0.25041771, 0.01669451],
       [0.80373519, 0.55070744, 0.22325977, 0.02976797],
       [0.786991  , 0.55745196, 0.26233033, 0.03279129],
       [0.82307218, 0.51442011, 0.24006272, 0.01714734],
       [0.8025126 , 0.55989251, 0.20529392, 0.01866308],
       [0.81120865, 0.55945424, 0.16783627, 0.02797271],
       [0.77381111, 0.59732787, 0.2036345 , 0.05430253],
       [0.79428944, 0.57365349, 0.19121783, 0.05883625],
       [0.80327412, 0.55126656, 0.22050662, 0.04725142],
       [0.8068282 , 0.53788547, 0.24063297, 0.04246464],
       [0.77964883, 0.58091482, 0.22930848, 0.0458617 ],
       [0.8173379 , 0.51462016, 0.25731008, 0.03027177],
       [0.78591858, 0.57017622, 0.23115252, 0.06164067],
       [0.77577075, 0.60712493, 0.16864581, 0.03372916],
       [0.80597792, 0.52151512, 0.26865931, 0.07901744],
       [0.776114  , 0.54974742, 0.30721179, 0.03233808],
       [0.82647451, 0.4958847 , 0.26447184, 0.03305898],
       [0.79778206, 0.5424918 , 0.25529026, 0.06382256],
       [0.80641965, 0.54278246, 0.23262105, 0.03101614],
       [0.81609427, 0.5336001 , 0.21971769, 0.03138824],
       [0.79524064, 0.54144043, 0.27072022, 0.03384003],
       [0.80846584, 0.52213419, 0.26948861, 0.03368608],
       [0.82225028, 0.51771314, 0.22840286, 0.06090743],
       [0.76578311, 0.60379053, 0.22089897, 0.0147266 ],
       [0.77867447, 0.59462414, 0.19820805, 0.02831544],
       [0.81768942, 0.51731371, 0.25031309, 0.03337508],
       [0.82512295, 0.52807869, 0.19802951, 0.03300492],
       [0.82699754, 0.52627116, 0.19547215, 0.03007264],
       [0.78523221, 0.5769053 , 0.22435206, 0.01602515],
       [0.80212413, 0.54690282, 0.23699122, 0.03646019],
       [0.80779568, 0.53853046, 0.23758697, 0.03167826],
       [0.80033301, 0.56023311, 0.20808658, 0.04801998],
       [0.86093857, 0.44003527, 0.24871559, 0.0573959 ],
       [0.78609038, 0.57170209, 0.23225397, 0.03573138],
       [0.78889479, 0.55222635, 0.25244633, 0.09466737],
       [0.76693897, 0.57144472, 0.28572236, 0.06015208],
       [0.82210585, 0.51381615, 0.23978087, 0.05138162],
       [0.77729093, 0.57915795, 0.24385598, 0.030482  ],
       [0.79594782, 0.55370283, 0.24224499, 0.03460643],
       [0.79837025, 0.55735281, 0.22595384, 0.03012718],
       [0.81228363, 0.5361072 , 0.22743942, 0.03249135],
       [0.76701103, 0.35063361, 0.51499312, 0.15340221],
       [0.74549757, 0.37274878, 0.52417798, 0.17472599],
       [0.75519285, 0.33928954, 0.53629637, 0.16417236],
       [0.75384916, 0.31524601, 0.54825394, 0.17818253],
       [0.7581754 , 0.32659863, 0.5365549 , 0.17496355],
       [0.72232962, 0.35482858, 0.57026022, 0.16474184],
       [0.72634846, 0.38046824, 0.54187901, 0.18446945],
       [0.75916547, 0.37183615, 0.51127471, 0.15493173],
       [0.76301853, 0.33526572, 0.53180079, 0.15029153],
       [0.72460233, 0.37623583, 0.54345175, 0.19508524],
       [0.76923077, 0.30769231, 0.53846154, 0.15384615],
       [0.73923462, 0.37588201, 0.52623481, 0.187941  ],
       [0.78892752, 0.28927343, 0.52595168, 0.13148792],
       [0.73081412, 0.34743622, 0.56308629, 0.16772783],
       [0.75911707, 0.3931142 , 0.48800383, 0.17622361],
       [0.76945444, 0.35601624, 0.50531337, 0.16078153],
       [0.70631892, 0.37838513, 0.5675777 , 0.18919257],
       [0.75676497, 0.35228714, 0.53495455, 0.13047672],
       [0.76444238, 0.27125375, 0.55483721, 0.18494574],
       [0.76185188, 0.34011245, 0.53057542, 0.14964948],
       [0.6985796 , 0.37889063, 0.56833595, 0.21312598],
       [0.77011854, 0.35349703, 0.50499576, 0.16412362],
       [0.74143307, 0.29421947, 0.57667016, 0.17653168],
       [0.73659895, 0.33811099, 0.56754345, 0.14490471],
       [0.76741698, 0.34773582, 0.51560829, 0.15588157],
       [0.76785726, 0.34902603, 0.51190484, 0.16287881],
       [0.76467269, 0.31486523, 0.53976896, 0.15743261],
       [0.74088576, 0.33173989, 0.55289982, 0.18798594],
       [0.73350949, 0.35452959, 0.55013212, 0.18337737],
       [0.78667474, 0.35883409, 0.48304589, 0.13801311],
       [0.76521855, 0.33391355, 0.52869645, 0.15304371],
       [0.77242925, 0.33706004, 0.51963422, 0.14044168],
       [0.76434981, 0.35581802, 0.51395936, 0.15814134],
       [0.70779525, 0.31850786, 0.60162596, 0.1887454 ],
       [0.69333409, 0.38518561, 0.57777841, 0.1925928 ],
       [0.71524936, 0.40530797, 0.53643702, 0.19073316],
       [0.75457341, 0.34913098, 0.52932761, 0.16893434],
       [0.77530021, 0.28304611, 0.54147951, 0.15998258],
       [0.72992443, 0.39103094, 0.53440896, 0.16944674],
       [0.74714194, 0.33960997, 0.54337595, 0.17659719],
       [0.72337118, 0.34195729, 0.57869695, 0.15782644],
       [0.73260391, 0.36029701, 0.55245541, 0.1681386 ],
       [0.76262994, 0.34186859, 0.52595168, 0.1577855 ],
       [0.76986879, 0.35413965, 0.5081134 , 0.15397376],
       [0.73544284, 0.35458851, 0.55158213, 0.1707278 ],
       [0.73239618, 0.38547167, 0.53966034, 0.15418867],
       [0.73446047, 0.37367287, 0.5411814 , 0.16750853],
       [0.75728103, 0.3542121 , 0.52521104, 0.15878473],
       [0.78258054, 0.38361791, 0.4603415 , 0.16879188],
       [0.7431482 , 0.36505526, 0.5345452 , 0.16948994],
       [0.65387747, 0.34250725, 0.62274045, 0.25947519],
       [0.69052512, 0.32145135, 0.60718588, 0.22620651],
       [0.71491405, 0.30207636, 0.59408351, 0.21145345],
       [0.69276796, 0.31889319, 0.61579374, 0.1979337 ],
       [0.68619022, 0.31670318, 0.61229281, 0.232249  ],
       [0.70953708, 0.28008043, 0.61617694, 0.1960563 ],
       [0.67054118, 0.34211284, 0.61580312, 0.23263673],
       [0.71366557, 0.28351098, 0.61590317, 0.17597233],
       [0.71414125, 0.26647062, 0.61821183, 0.19185884],
       [0.69198788, 0.34599394, 0.58626751, 0.24027357],
       [0.71562645, 0.3523084 , 0.56149152, 0.22019275],
       [0.71576546, 0.30196356, 0.59274328, 0.21249287],
       [0.71718148, 0.31640359, 0.58007326, 0.22148252],
       [0.6925518 , 0.30375079, 0.60750157, 0.24300063],
       [0.67767924, 0.32715549, 0.59589036, 0.28041899],
       [0.69589887, 0.34794944, 0.57629125, 0.25008866],
       [0.70610474, 0.3258945 , 0.59747324, 0.1955367 ],
       [0.69299099, 0.34199555, 0.60299216, 0.19799743],
       [0.70600618, 0.2383917 , 0.63265489, 0.21088496],
       [0.72712585, 0.26661281, 0.60593821, 0.18178146],
       [0.70558934, 0.32722984, 0.58287815, 0.23519645],
       [0.68307923, 0.34153961, 0.59769433, 0.24395687],
       [0.71486543, 0.25995106, 0.62202576, 0.18567933],
       [0.73122464, 0.31338199, 0.56873028, 0.20892133],
       [0.69595601, 0.3427843 , 0.59208198, 0.21813547],
       [0.71529453, 0.31790868, 0.59607878, 0.17882363],
       [0.72785195, 0.32870733, 0.56349829, 0.21131186],
       [0.71171214, 0.35002236, 0.57170319, 0.21001342],
       [0.69594002, 0.30447376, 0.60894751, 0.22835532],
       [0.73089855, 0.30454106, 0.58877939, 0.1624219 ],
       [0.72766159, 0.27533141, 0.59982915, 0.18683203],
       [0.71578999, 0.34430405, 0.5798805 , 0.18121266],
       [0.69417747, 0.30370264, 0.60740528, 0.2386235 ],
       [0.72366005, 0.32162669, 0.58582004, 0.17230001],
       [0.69385414, 0.29574111, 0.63698085, 0.15924521],
       [0.73154399, 0.28501714, 0.57953485, 0.21851314],
       [0.67017484, 0.36168166, 0.59571097, 0.2553047 ],
       [0.69804799, 0.338117  , 0.59988499, 0.196326  ],
       [0.71066905, 0.35533453, 0.56853524, 0.21320072],
       [0.72415258, 0.32534391, 0.56672811, 0.22039426],
       [0.69997037, 0.32386689, 0.58504986, 0.25073566],
       [0.73337886, 0.32948905, 0.54206264, 0.24445962],
       [0.69052512, 0.32145135, 0.60718588, 0.22620651],
       [0.69193502, 0.32561648, 0.60035539, 0.23403685],
       [0.68914871, 0.33943145, 0.58629069, 0.25714504],
       [0.72155725, 0.32308533, 0.56001458, 0.24769876],
       [0.72965359, 0.28954508, 0.57909015, 0.22005426],
       [0.71653899, 0.3307103 , 0.57323119, 0.22047353],
       [0.67467072, 0.36998072, 0.58761643, 0.25028107],
       [0.69025916, 0.35097923, 0.5966647 , 0.21058754]])

定量特征二值化

from sklearn.preprocessing import Binarizer

Binarizer(threshold=3).fit_transform(x)
array([[1., 1., 0., 0.],
       [1., 0., 0., 0.],
       [1., 1., 0., 0.],
       [1., 1., 0., 0.],
       [1., 1., 0., 0.],
       [1., 1., 0., 0.],
       [1., 1., 0., 0.],
       [1., 1., 0., 0.],
       [1., 0., 0., 0.],
       [1., 1., 0., 0.],
       [1., 1., 0., 0.],
       [1., 1., 0., 0.],
       [1., 0., 0., 0.],
       [1., 0., 0., 0.],
       [1., 1., 0., 0.],
       [1., 1., 0., 0.],
       [1., 1., 0., 0.],
       [1., 1., 0., 0.],
       [1., 1., 0., 0.],
       [1., 1., 0., 0.],
       [1., 1., 0., 0.],
       [1., 1., 0., 0.],
       [1., 1., 0., 0.],
       [1., 1., 0., 0.],
       [1., 1., 0., 0.],
       [1., 0., 0., 0.],
       [1., 1., 0., 0.],
       [1., 1., 0., 0.],
       [1., 1., 0., 0.],
       [1., 1., 0., 0.],
       [1., 1., 0., 0.],
       [1., 1., 0., 0.],
       [1., 1., 0., 0.],
       [1., 1., 0., 0.],
       [1., 1., 0., 0.],
       [1., 1., 0., 0.],
       [1., 1., 0., 0.],
       [1., 1., 0., 0.],
       [1., 0., 0., 0.],
       [1., 1., 0., 0.],
       [1., 1., 0., 0.],
       [1., 0., 0., 0.],
       [1., 1., 0., 0.],
       [1., 1., 0., 0.],
       [1., 1., 0., 0.],
       [1., 0., 0., 0.],
       [1., 1., 0., 0.],
       [1., 1., 0., 0.],
       [1., 1., 0., 0.],
       [1., 1., 0., 0.],
       [1., 1., 1., 0.],
       [1., 1., 1., 0.],
       [1., 1., 1., 0.],
       [1., 0., 1., 0.],
       [1., 0., 1., 0.],
       [1., 0., 1., 0.],
       [1., 1., 1., 0.],
       [1., 0., 1., 0.],
       [1., 0., 1., 0.],
       [1., 0., 1., 0.],
       [1., 0., 1., 0.],
       [1., 0., 1., 0.],
       [1., 0., 1., 0.],
       [1., 0., 1., 0.],
       [1., 0., 1., 0.],
       [1., 1., 1., 0.],
       [1., 0., 1., 0.],
       [1., 0., 1., 0.],
       [1., 0., 1., 0.],
       [1., 0., 1., 0.],
       [1., 1., 1., 0.],
       [1., 0., 1., 0.],
       [1., 0., 1., 0.],
       [1., 0., 1., 0.],
       [1., 0., 1., 0.],
       [1., 0., 1., 0.],
       [1., 0., 1., 0.],
       [1., 0., 1., 0.],
       [1., 0., 1., 0.],
       [1., 0., 1., 0.],
       [1., 0., 1., 0.],
       [1., 0., 1., 0.],
       [1., 0., 1., 0.],
       [1., 0., 1., 0.],
       [1., 0., 1., 0.],
       [1., 1., 1., 0.],
       [1., 1., 1., 0.],
       [1., 0., 1., 0.],
       [1., 0., 1., 0.],
       [1., 0., 1., 0.],
       [1., 0., 1., 0.],
       [1., 0., 1., 0.],
       [1., 0., 1., 0.],
       [1., 0., 1., 0.],
       [1., 0., 1., 0.],
       [1., 0., 1., 0.],
       [1., 0., 1., 0.],
       [1., 0., 1., 0.],
       [1., 0., 0., 0.],
       [1., 0., 1., 0.],
       [1., 1., 1., 0.],
       [1., 0., 1., 0.],
       [1., 0., 1., 0.],
       [1., 0., 1., 0.],
       [1., 0., 1., 0.],
       [1., 0., 1., 0.],
       [1., 0., 1., 0.],
       [1., 0., 1., 0.],
       [1., 0., 1., 0.],
       [1., 1., 1., 0.],
       [1., 1., 1., 0.],
       [1., 0., 1., 0.],
       [1., 0., 1., 0.],
       [1., 0., 1., 0.],
       [1., 0., 1., 0.],
       [1., 1., 1., 0.],
       [1., 0., 1., 0.],
       [1., 1., 1., 0.],
       [1., 0., 1., 0.],
       [1., 0., 1., 0.],
       [1., 1., 1., 0.],
       [1., 0., 1., 0.],
       [1., 0., 1., 0.],
       [1., 0., 1., 0.],
       [1., 1., 1., 0.],
       [1., 1., 1., 0.],
       [1., 0., 1., 0.],
       [1., 0., 1., 0.],
       [1., 0., 1., 0.],
       [1., 0., 1., 0.],
       [1., 0., 1., 0.],
       [1., 1., 1., 0.],
       [1., 0., 1., 0.],
       [1., 0., 1., 0.],
       [1., 0., 1., 0.],
       [1., 0., 1., 0.],
       [1., 1., 1., 0.],
       [1., 1., 1., 0.],
       [1., 0., 1., 0.],
       [1., 1., 1., 0.],
       [1., 1., 1., 0.],
       [1., 1., 1., 0.],
       [1., 0., 1., 0.],
       [1., 1., 1., 0.],
       [1., 1., 1., 0.],
       [1., 0., 1., 0.],
       [1., 0., 1., 0.],
       [1., 0., 1., 0.],
       [1., 1., 1., 0.],
       [1., 0., 1., 0.]])

定性特征哑变量

from sklearn.preprocessing import OneHotEncoder

OneHotEncoder().fit_transform(x).toarray()
array([[0., 0., 0., ..., 0., 0., 0.],
       [0., 0., 0., ..., 0., 0., 0.],
       [0., 0., 0., ..., 0., 0., 0.],
       ...,
       [0., 0., 0., ..., 0., 0., 0.],
       [0., 0., 0., ..., 1., 0., 0.],
       [0., 0., 0., ..., 0., 0., 0.]])

缺失值处理

from sklearn.impute import SimpleImputer

SimpleImputer(missing_values=np.nan,strategy='constant',fill_value=0).fit_transform(x)
array([[5.1, 3.5, 1.4, 0.2],
       [4.9, 3. , 1.4, 0.2],
       [4.7, 3.2, 1.3, 0.2],
       [4.6, 3.1, 1.5, 0.2],
       [5. , 3.6, 1.4, 0.2],
       [5.4, 3.9, 1.7, 0.4],
       [4.6, 3.4, 1.4, 0.3],
       [5. , 3.4, 1.5, 0.2],
       [4.4, 2.9, 1.4, 0.2],
       [4.9, 3.1, 1.5, 0.1],
       [5.4, 3.7, 1.5, 0.2],
       [4.8, 3.4, 1.6, 0.2],
       [4.8, 3. , 1.4, 0.1],
       [4.3, 3. , 1.1, 0.1],
       [5.8, 4. , 1.2, 0.2],
       [5.7, 4.4, 1.5, 0.4],
       [5.4, 3.9, 1.3, 0.4],
       [5.1, 3.5, 1.4, 0.3],
       [5.7, 3.8, 1.7, 0.3],
       [5.1, 3.8, 1.5, 0.3],
       [5.4, 3.4, 1.7, 0.2],
       [5.1, 3.7, 1.5, 0.4],
       [4.6, 3.6, 1. , 0.2],
       [5.1, 3.3, 1.7, 0.5],
       [4.8, 3.4, 1.9, 0.2],
       [5. , 3. , 1.6, 0.2],
       [5. , 3.4, 1.6, 0.4],
       [5.2, 3.5, 1.5, 0.2],
       [5.2, 3.4, 1.4, 0.2],
       [4.7, 3.2, 1.6, 0.2],
       [4.8, 3.1, 1.6, 0.2],
       [5.4, 3.4, 1.5, 0.4],
       [5.2, 4.1, 1.5, 0.1],
       [5.5, 4.2, 1.4, 0.2],
       [4.9, 3.1, 1.5, 0.2],
       [5. , 3.2, 1.2, 0.2],
       [5.5, 3.5, 1.3, 0.2],
       [4.9, 3.6, 1.4, 0.1],
       [4.4, 3. , 1.3, 0.2],
       [5.1, 3.4, 1.5, 0.2],
       [5. , 3.5, 1.3, 0.3],
       [4.5, 2.3, 1.3, 0.3],
       [4.4, 3.2, 1.3, 0.2],
       [5. , 3.5, 1.6, 0.6],
       [5.1, 3.8, 1.9, 0.4],
       [4.8, 3. , 1.4, 0.3],
       [5.1, 3.8, 1.6, 0.2],
       [4.6, 3.2, 1.4, 0.2],
       [5.3, 3.7, 1.5, 0.2],
       [5. , 3.3, 1.4, 0.2],
       [7. , 3.2, 4.7, 1.4],
       [6.4, 3.2, 4.5, 1.5],
       [6.9, 3.1, 4.9, 1.5],
       [5.5, 2.3, 4. , 1.3],
       [6.5, 2.8, 4.6, 1.5],
       [5.7, 2.8, 4.5, 1.3],
       [6.3, 3.3, 4.7, 1.6],
       [4.9, 2.4, 3.3, 1. ],
       [6.6, 2.9, 4.6, 1.3],
       [5.2, 2.7, 3.9, 1.4],
       [5. , 2. , 3.5, 1. ],
       [5.9, 3. , 4.2, 1.5],
       [6. , 2.2, 4. , 1. ],
       [6.1, 2.9, 4.7, 1.4],
       [5.6, 2.9, 3.6, 1.3],
       [6.7, 3.1, 4.4, 1.4],
       [5.6, 3. , 4.5, 1.5],
       [5.8, 2.7, 4.1, 1. ],
       [6.2, 2.2, 4.5, 1.5],
       [5.6, 2.5, 3.9, 1.1],
       [5.9, 3.2, 4.8, 1.8],
       [6.1, 2.8, 4. , 1.3],
       [6.3, 2.5, 4.9, 1.5],
       [6.1, 2.8, 4.7, 1.2],
       [6.4, 2.9, 4.3, 1.3],
       [6.6, 3. , 4.4, 1.4],
       [6.8, 2.8, 4.8, 1.4],
       [6.7, 3. , 5. , 1.7],
       [6. , 2.9, 4.5, 1.5],
       [5.7, 2.6, 3.5, 1. ],
       [5.5, 2.4, 3.8, 1.1],
       [5.5, 2.4, 3.7, 1. ],
       [5.8, 2.7, 3.9, 1.2],
       [6. , 2.7, 5.1, 1.6],
       [5.4, 3. , 4.5, 1.5],
       [6. , 3.4, 4.5, 1.6],
       [6.7, 3.1, 4.7, 1.5],
       [6.3, 2.3, 4.4, 1.3],
       [5.6, 3. , 4.1, 1.3],
       [5.5, 2.5, 4. , 1.3],
       [5.5, 2.6, 4.4, 1.2],
       [6.1, 3. , 4.6, 1.4],
       [5.8, 2.6, 4. , 1.2],
       [5. , 2.3, 3.3, 1. ],
       [5.6, 2.7, 4.2, 1.3],
       [5.7, 3. , 4.2, 1.2],
       [5.7, 2.9, 4.2, 1.3],
       [6.2, 2.9, 4.3, 1.3],
       [5.1, 2.5, 3. , 1.1],
       [5.7, 2.8, 4.1, 1.3],
       [6.3, 3.3, 6. , 2.5],
       [5.8, 2.7, 5.1, 1.9],
       [7.1, 3. , 5.9, 2.1],
       [6.3, 2.9, 5.6, 1.8],
       [6.5, 3. , 5.8, 2.2],
       [7.6, 3. , 6.6, 2.1],
       [4.9, 2.5, 4.5, 1.7],
       [7.3, 2.9, 6.3, 1.8],
       [6.7, 2.5, 5.8, 1.8],
       [7.2, 3.6, 6.1, 2.5],
       [6.5, 3.2, 5.1, 2. ],
       [6.4, 2.7, 5.3, 1.9],
       [6.8, 3. , 5.5, 2.1],
       [5.7, 2.5, 5. , 2. ],
       [5.8, 2.8, 5.1, 2.4],
       [6.4, 3.2, 5.3, 2.3],
       [6.5, 3. , 5.5, 1.8],
       [7.7, 3.8, 6.7, 2.2],
       [7.7, 2.6, 6.9, 2.3],
       [6. , 2.2, 5. , 1.5],
       [6.9, 3.2, 5.7, 2.3],
       [5.6, 2.8, 4.9, 2. ],
       [7.7, 2.8, 6.7, 2. ],
       [6.3, 2.7, 4.9, 1.8],
       [6.7, 3.3, 5.7, 2.1],
       [7.2, 3.2, 6. , 1.8],
       [6.2, 2.8, 4.8, 1.8],
       [6.1, 3. , 4.9, 1.8],
       [6.4, 2.8, 5.6, 2.1],
       [7.2, 3. , 5.8, 1.6],
       [7.4, 2.8, 6.1, 1.9],
       [7.9, 3.8, 6.4, 2. ],
       [6.4, 2.8, 5.6, 2.2],
       [6.3, 2.8, 5.1, 1.5],
       [6.1, 2.6, 5.6, 1.4],
       [7.7, 3. , 6.1, 2.3],
       [6.3, 3.4, 5.6, 2.4],
       [6.4, 3.1, 5.5, 1.8],
       [6. , 3. , 4.8, 1.8],
       [6.9, 3.1, 5.4, 2.1],
       [6.7, 3.1, 5.6, 2.4],
       [6.9, 3.1, 5.1, 2.3],
       [5.8, 2.7, 5.1, 1.9],
       [6.8, 3.2, 5.9, 2.3],
       [6.7, 3.3, 5.7, 2.5],
       [6.7, 3. , 5.2, 2.3],
       [6.3, 2.5, 5. , 1.9],
       [6.5, 3. , 5.2, 2. ],
       [6.2, 3.4, 5.4, 2.3],
       [5.9, 3. , 5.1, 1.8]])

数据转换

多项式转换
from sklearn.preprocessing import PolynomialFeatures

PolynomialFeatures().fit_transform(x)
array([[ 1.  ,  5.1 ,  3.5 , ...,  1.96,  0.28,  0.04],
       [ 1.  ,  4.9 ,  3.  , ...,  1.96,  0.28,  0.04],
       [ 1.  ,  4.7 ,  3.2 , ...,  1.69,  0.26,  0.04],
       ...,
       [ 1.  ,  6.5 ,  3.  , ..., 27.04, 10.4 ,  4.  ],
       [ 1.  ,  6.2 ,  3.4 , ..., 29.16, 12.42,  5.29],
       [ 1.  ,  5.9 ,  3.  , ..., 26.01,  9.18,  3.24]])
对数变换
np.log1p(x)
array([[1.80828877, 1.5040774 , 0.87546874, 0.18232156],
       [1.77495235, 1.38629436, 0.87546874, 0.18232156],
       [1.74046617, 1.43508453, 0.83290912, 0.18232156],
       [1.7227666 , 1.41098697, 0.91629073, 0.18232156],
       [1.79175947, 1.5260563 , 0.87546874, 0.18232156],
       [1.85629799, 1.58923521, 0.99325177, 0.33647224],
       [1.7227666 , 1.48160454, 0.87546874, 0.26236426],
       [1.79175947, 1.48160454, 0.91629073, 0.18232156],
       [1.68639895, 1.36097655, 0.87546874, 0.18232156],
       [1.77495235, 1.41098697, 0.91629073, 0.09531018],
       [1.85629799, 1.54756251, 0.91629073, 0.18232156],
       [1.75785792, 1.48160454, 0.95551145, 0.18232156],
       [1.75785792, 1.38629436, 0.87546874, 0.09531018],
       [1.66770682, 1.38629436, 0.74193734, 0.09531018],
       [1.91692261, 1.60943791, 0.78845736, 0.18232156],
       [1.90210753, 1.68639895, 0.91629073, 0.33647224],
       [1.85629799, 1.58923521, 0.83290912, 0.33647224],
       [1.80828877, 1.5040774 , 0.87546874, 0.26236426],
       [1.90210753, 1.56861592, 0.99325177, 0.26236426],
       [1.80828877, 1.56861592, 0.91629073, 0.26236426],
       [1.85629799, 1.48160454, 0.99325177, 0.18232156],
       [1.80828877, 1.54756251, 0.91629073, 0.33647224],
       [1.7227666 , 1.5260563 , 0.69314718, 0.18232156],
       [1.80828877, 1.45861502, 0.99325177, 0.40546511],
       [1.75785792, 1.48160454, 1.06471074, 0.18232156],
       [1.79175947, 1.38629436, 0.95551145, 0.18232156],
       [1.79175947, 1.48160454, 0.95551145, 0.33647224],
       [1.82454929, 1.5040774 , 0.91629073, 0.18232156],
       [1.82454929, 1.48160454, 0.87546874, 0.18232156],
       [1.74046617, 1.43508453, 0.95551145, 0.18232156],
       [1.75785792, 1.41098697, 0.95551145, 0.18232156],
       [1.85629799, 1.48160454, 0.91629073, 0.33647224],
       [1.82454929, 1.62924054, 0.91629073, 0.09531018],
       [1.87180218, 1.64865863, 0.87546874, 0.18232156],
       [1.77495235, 1.41098697, 0.91629073, 0.18232156],
       [1.79175947, 1.43508453, 0.78845736, 0.18232156],
       [1.87180218, 1.5040774 , 0.83290912, 0.18232156],
       [1.77495235, 1.5260563 , 0.87546874, 0.09531018],
       [1.68639895, 1.38629436, 0.83290912, 0.18232156],
       [1.80828877, 1.48160454, 0.91629073, 0.18232156],
       [1.79175947, 1.5040774 , 0.83290912, 0.26236426],
       [1.70474809, 1.19392247, 0.83290912, 0.26236426],
       [1.68639895, 1.43508453, 0.83290912, 0.18232156],
       [1.79175947, 1.5040774 , 0.95551145, 0.47000363],
       [1.80828877, 1.56861592, 1.06471074, 0.33647224],
       [1.75785792, 1.38629436, 0.87546874, 0.26236426],
       [1.80828877, 1.56861592, 0.95551145, 0.18232156],
       [1.7227666 , 1.43508453, 0.87546874, 0.18232156],
       [1.84054963, 1.54756251, 0.91629073, 0.18232156],
       [1.79175947, 1.45861502, 0.87546874, 0.18232156],
       [2.07944154, 1.43508453, 1.74046617, 0.87546874],
       [2.00148   , 1.43508453, 1.70474809, 0.91629073],
       [2.06686276, 1.41098697, 1.77495235, 0.91629073],
       [1.87180218, 1.19392247, 1.60943791, 0.83290912],
       [2.01490302, 1.33500107, 1.7227666 , 0.91629073],
       [1.90210753, 1.33500107, 1.70474809, 0.83290912],
       [1.98787435, 1.45861502, 1.74046617, 0.95551145],
       [1.77495235, 1.22377543, 1.45861502, 0.69314718],
       [2.02814825, 1.36097655, 1.7227666 , 0.83290912],
       [1.82454929, 1.30833282, 1.58923521, 0.87546874],
       [1.79175947, 1.09861229, 1.5040774 , 0.69314718],
       [1.93152141, 1.38629436, 1.64865863, 0.91629073],
       [1.94591015, 1.16315081, 1.60943791, 0.69314718],
       [1.96009478, 1.36097655, 1.74046617, 0.87546874],
       [1.88706965, 1.36097655, 1.5260563 , 0.83290912],
       [2.04122033, 1.41098697, 1.68639895, 0.87546874],
       [1.88706965, 1.38629436, 1.70474809, 0.91629073],
       [1.91692261, 1.30833282, 1.62924054, 0.69314718],
       [1.97408103, 1.16315081, 1.70474809, 0.91629073],
       [1.88706965, 1.25276297, 1.58923521, 0.74193734],
       [1.93152141, 1.43508453, 1.75785792, 1.02961942],
       [1.96009478, 1.33500107, 1.60943791, 0.83290912],
       [1.98787435, 1.25276297, 1.77495235, 0.91629073],
       [1.96009478, 1.33500107, 1.74046617, 0.78845736],
       [2.00148   , 1.36097655, 1.66770682, 0.83290912],
       [2.02814825, 1.38629436, 1.68639895, 0.87546874],
       [2.05412373, 1.33500107, 1.75785792, 0.87546874],
       [2.04122033, 1.38629436, 1.79175947, 0.99325177],
       [1.94591015, 1.36097655, 1.70474809, 0.91629073],
       [1.90210753, 1.28093385, 1.5040774 , 0.69314718],
       [1.87180218, 1.22377543, 1.56861592, 0.74193734],
       [1.87180218, 1.22377543, 1.54756251, 0.69314718],
       [1.91692261, 1.30833282, 1.58923521, 0.78845736],
       [1.94591015, 1.30833282, 1.80828877, 0.95551145],
       [1.85629799, 1.38629436, 1.70474809, 0.91629073],
       [1.94591015, 1.48160454, 1.70474809, 0.95551145],
       [2.04122033, 1.41098697, 1.74046617, 0.91629073],
       [1.98787435, 1.19392247, 1.68639895, 0.83290912],
       [1.88706965, 1.38629436, 1.62924054, 0.83290912],
       [1.87180218, 1.25276297, 1.60943791, 0.83290912],
       [1.87180218, 1.28093385, 1.68639895, 0.78845736],
       [1.96009478, 1.38629436, 1.7227666 , 0.87546874],
       [1.91692261, 1.28093385, 1.60943791, 0.78845736],
       [1.79175947, 1.19392247, 1.45861502, 0.69314718],
       [1.88706965, 1.30833282, 1.64865863, 0.83290912],
       [1.90210753, 1.38629436, 1.64865863, 0.78845736],
       [1.90210753, 1.36097655, 1.64865863, 0.83290912],
       [1.97408103, 1.36097655, 1.66770682, 0.83290912],
       [1.80828877, 1.25276297, 1.38629436, 0.74193734],
       [1.90210753, 1.33500107, 1.62924054, 0.83290912],
       [1.98787435, 1.45861502, 1.94591015, 1.25276297],
       [1.91692261, 1.30833282, 1.80828877, 1.06471074],
       [2.09186406, 1.38629436, 1.93152141, 1.13140211],
       [1.98787435, 1.36097655, 1.88706965, 1.02961942],
       [2.01490302, 1.38629436, 1.91692261, 1.16315081],
       [2.1517622 , 1.38629436, 2.02814825, 1.13140211],
       [1.77495235, 1.25276297, 1.70474809, 0.99325177],
       [2.11625551, 1.36097655, 1.98787435, 1.02961942],
       [2.04122033, 1.25276297, 1.91692261, 1.02961942],
       [2.10413415, 1.5260563 , 1.96009478, 1.25276297],
       [2.01490302, 1.43508453, 1.80828877, 1.09861229],
       [2.00148   , 1.30833282, 1.84054963, 1.06471074],
       [2.05412373, 1.38629436, 1.87180218, 1.13140211],
       [1.90210753, 1.25276297, 1.79175947, 1.09861229],
       [1.91692261, 1.33500107, 1.80828877, 1.22377543],
       [2.00148   , 1.43508453, 1.84054963, 1.19392247],
       [2.01490302, 1.38629436, 1.87180218, 1.02961942],
       [2.16332303, 1.56861592, 2.04122033, 1.16315081],
       [2.16332303, 1.28093385, 2.06686276, 1.19392247],
       [1.94591015, 1.16315081, 1.79175947, 0.91629073],
       [2.06686276, 1.43508453, 1.90210753, 1.19392247],
       [1.88706965, 1.33500107, 1.77495235, 1.09861229],
       [2.16332303, 1.33500107, 2.04122033, 1.09861229],
       [1.98787435, 1.30833282, 1.77495235, 1.02961942],
       [2.04122033, 1.45861502, 1.90210753, 1.13140211],
       [2.10413415, 1.43508453, 1.94591015, 1.02961942],
       [1.97408103, 1.33500107, 1.75785792, 1.02961942],
       [1.96009478, 1.38629436, 1.77495235, 1.02961942],
       [2.00148   , 1.33500107, 1.88706965, 1.13140211],
       [2.10413415, 1.38629436, 1.91692261, 0.95551145],
       [2.12823171, 1.33500107, 1.96009478, 1.06471074],
       [2.18605128, 1.56861592, 2.00148   , 1.09861229],
       [2.00148   , 1.33500107, 1.88706965, 1.16315081],
       [1.98787435, 1.33500107, 1.80828877, 0.91629073],
       [1.96009478, 1.28093385, 1.88706965, 0.87546874],
       [2.16332303, 1.38629436, 1.96009478, 1.19392247],
       [1.98787435, 1.48160454, 1.88706965, 1.22377543],
       [2.00148   , 1.41098697, 1.87180218, 1.02961942],
       [1.94591015, 1.38629436, 1.75785792, 1.02961942],
       [2.06686276, 1.41098697, 1.85629799, 1.13140211],
       [2.04122033, 1.41098697, 1.88706965, 1.22377543],
       [2.06686276, 1.41098697, 1.80828877, 1.19392247],
       [1.91692261, 1.30833282, 1.80828877, 1.06471074],
       [2.05412373, 1.43508453, 1.93152141, 1.19392247],
       [2.04122033, 1.45861502, 1.90210753, 1.25276297],
       [2.04122033, 1.38629436, 1.82454929, 1.19392247],
       [1.98787435, 1.25276297, 1.79175947, 1.06471074],
       [2.01490302, 1.38629436, 1.82454929, 1.09861229],
       [1.97408103, 1.48160454, 1.85629799, 1.19392247],
       [1.93152141, 1.38629436, 1.80828877, 1.02961942]])

特征降维

VarianceThreshold方差过滤

from sklearn.feature_selection import VarianceThreshold

VarianceThreshold(threshold=3).fit_transform(x)
array([[1.4],
       [1.4],
       [1.3],
       [1.5],
       [1.4],
       [1.7],
       [1.4],
       [1.5],
       [1.4],
       [1.5],
       [1.5],
       [1.6],
       [1.4],
       [1.1],
       [1.2],
       [1.5],
       [1.3],
       [1.4],
       [1.7],
       [1.5],
       [1.7],
       [1.5],
       [1. ],
       [1.7],
       [1.9],
       [1.6],
       [1.6],
       [1.5],
       [1.4],
       [1.6],
       [1.6],
       [1.5],
       [1.5],
       [1.4],
       [1.5],
       [1.2],
       [1.3],
       [1.4],
       [1.3],
       [1.5],
       [1.3],
       [1.3],
       [1.3],
       [1.6],
       [1.9],
       [1.4],
       [1.6],
       [1.4],
       [1.5],
       [1.4],
       [4.7],
       [4.5],
       [4.9],
       [4. ],
       [4.6],
       [4.5],
       [4.7],
       [3.3],
       [4.6],
       [3.9],
       [3.5],
       [4.2],
       [4. ],
       [4.7],
       [3.6],
       [4.4],
       [4.5],
       [4.1],
       [4.5],
       [3.9],
       [4.8],
       [4. ],
       [4.9],
       [4.7],
       [4.3],
       [4.4],
       [4.8],
       [5. ],
       [4.5],
       [3.5],
       [3.8],
       [3.7],
       [3.9],
       [5.1],
       [4.5],
       [4.5],
       [4.7],
       [4.4],
       [4.1],
       [4. ],
       [4.4],
       [4.6],
       [4. ],
       [3.3],
       [4.2],
       [4.2],
       [4.2],
       [4.3],
       [3. ],
       [4.1],
       [6. ],
       [5.1],
       [5.9],
       [5.6],
       [5.8],
       [6.6],
       [4.5],
       [6.3],
       [5.8],
       [6.1],
       [5.1],
       [5.3],
       [5.5],
       [5. ],
       [5.1],
       [5.3],
       [5.5],
       [6.7],
       [6.9],
       [5. ],
       [5.7],
       [4.9],
       [6.7],
       [4.9],
       [5.7],
       [6. ],
       [4.8],
       [4.9],
       [5.6],
       [5.8],
       [6.1],
       [6.4],
       [5.6],
       [5.1],
       [5.6],
       [6.1],
       [5.6],
       [5.5],
       [4.8],
       [5.4],
       [5.6],
       [5.1],
       [5.1],
       [5.9],
       [5.7],
       [5.2],
       [5. ],
       [5.2],
       [5.4],
       [5.1]])

SelectKBest

卡方检验

from sklearn.feature_selection import chi2
from sklearn.feature_selection import SelectKBest

SelectKBest(chi2,k=2).fit_transform(x,y)
array([[1.4, 0.2],
       [1.4, 0.2],
       [1.3, 0.2],
       [1.5, 0.2],
       [1.4, 0.2],
       [1.7, 0.4],
       [1.4, 0.3],
       [1.5, 0.2],
       [1.4, 0.2],
       [1.5, 0.1],
       [1.5, 0.2],
       [1.6, 0.2],
       [1.4, 0.1],
       [1.1, 0.1],
       [1.2, 0.2],
       [1.5, 0.4],
       [1.3, 0.4],
       [1.4, 0.3],
       [1.7, 0.3],
       [1.5, 0.3],
       [1.7, 0.2],
       [1.5, 0.4],
       [1. , 0.2],
       [1.7, 0.5],
       [1.9, 0.2],
       [1.6, 0.2],
       [1.6, 0.4],
       [1.5, 0.2],
       [1.4, 0.2],
       [1.6, 0.2],
       [1.6, 0.2],
       [1.5, 0.4],
       [1.5, 0.1],
       [1.4, 0.2],
       [1.5, 0.2],
       [1.2, 0.2],
       [1.3, 0.2],
       [1.4, 0.1],
       [1.3, 0.2],
       [1.5, 0.2],
       [1.3, 0.3],
       [1.3, 0.3],
       [1.3, 0.2],
       [1.6, 0.6],
       [1.9, 0.4],
       [1.4, 0.3],
       [1.6, 0.2],
       [1.4, 0.2],
       [1.5, 0.2],
       [1.4, 0.2],
       [4.7, 1.4],
       [4.5, 1.5],
       [4.9, 1.5],
       [4. , 1.3],
       [4.6, 1.5],
       [4.5, 1.3],
       [4.7, 1.6],
       [3.3, 1. ],
       [4.6, 1.3],
       [3.9, 1.4],
       [3.5, 1. ],
       [4.2, 1.5],
       [4. , 1. ],
       [4.7, 1.4],
       [3.6, 1.3],
       [4.4, 1.4],
       [4.5, 1.5],
       [4.1, 1. ],
       [4.5, 1.5],
       [3.9, 1.1],
       [4.8, 1.8],
       [4. , 1.3],
       [4.9, 1.5],
       [4.7, 1.2],
       [4.3, 1.3],
       [4.4, 1.4],
       [4.8, 1.4],
       [5. , 1.7],
       [4.5, 1.5],
       [3.5, 1. ],
       [3.8, 1.1],
       [3.7, 1. ],
       [3.9, 1.2],
       [5.1, 1.6],
       [4.5, 1.5],
       [4.5, 1.6],
       [4.7, 1.5],
       [4.4, 1.3],
       [4.1, 1.3],
       [4. , 1.3],
       [4.4, 1.2],
       [4.6, 1.4],
       [4. , 1.2],
       [3.3, 1. ],
       [4.2, 1.3],
       [4.2, 1.2],
       [4.2, 1.3],
       [4.3, 1.3],
       [3. , 1.1],
       [4.1, 1.3],
       [6. , 2.5],
       [5.1, 1.9],
       [5.9, 2.1],
       [5.6, 1.8],
       [5.8, 2.2],
       [6.6, 2.1],
       [4.5, 1.7],
       [6.3, 1.8],
       [5.8, 1.8],
       [6.1, 2.5],
       [5.1, 2. ],
       [5.3, 1.9],
       [5.5, 2.1],
       [5. , 2. ],
       [5.1, 2.4],
       [5.3, 2.3],
       [5.5, 1.8],
       [6.7, 2.2],
       [6.9, 2.3],
       [5. , 1.5],
       [5.7, 2.3],
       [4.9, 2. ],
       [6.7, 2. ],
       [4.9, 1.8],
       [5.7, 2.1],
       [6. , 1.8],
       [4.8, 1.8],
       [4.9, 1.8],
       [5.6, 2.1],
       [5.8, 1.6],
       [6.1, 1.9],
       [6.4, 2. ],
       [5.6, 2.2],
       [5.1, 1.5],
       [5.6, 1.4],
       [6.1, 2.3],
       [5.6, 2.4],
       [5.5, 1.8],
       [4.8, 1.8],
       [5.4, 2.1],
       [5.6, 2.4],
       [5.1, 2.3],
       [5.1, 1.9],
       [5.9, 2.3],
       [5.7, 2.5],
       [5.2, 2.3],
       [5. , 1.9],
       [5.2, 2. ],
       [5.4, 2.3],
       [5.1, 1.8]])

互信息法

from sklearn.feature_selection import mutual_info_regression

SelectKBest(mutual_info_regression,k=3).fit_transform(x,y)
array([[5.1, 1.4, 0.2],
       [4.9, 1.4, 0.2],
       [4.7, 1.3, 0.2],
       [4.6, 1.5, 0.2],
       [5. , 1.4, 0.2],
       [5.4, 1.7, 0.4],
       [4.6, 1.4, 0.3],
       [5. , 1.5, 0.2],
       [4.4, 1.4, 0.2],
       [4.9, 1.5, 0.1],
       [5.4, 1.5, 0.2],
       [4.8, 1.6, 0.2],
       [4.8, 1.4, 0.1],
       [4.3, 1.1, 0.1],
       [5.8, 1.2, 0.2],
       [5.7, 1.5, 0.4],
       [5.4, 1.3, 0.4],
       [5.1, 1.4, 0.3],
       [5.7, 1.7, 0.3],
       [5.1, 1.5, 0.3],
       [5.4, 1.7, 0.2],
       [5.1, 1.5, 0.4],
       [4.6, 1. , 0.2],
       [5.1, 1.7, 0.5],
       [4.8, 1.9, 0.2],
       [5. , 1.6, 0.2],
       [5. , 1.6, 0.4],
       [5.2, 1.5, 0.2],
       [5.2, 1.4, 0.2],
       [4.7, 1.6, 0.2],
       [4.8, 1.6, 0.2],
       [5.4, 1.5, 0.4],
       [5.2, 1.5, 0.1],
       [5.5, 1.4, 0.2],
       [4.9, 1.5, 0.2],
       [5. , 1.2, 0.2],
       [5.5, 1.3, 0.2],
       [4.9, 1.4, 0.1],
       [4.4, 1.3, 0.2],
       [5.1, 1.5, 0.2],
       [5. , 1.3, 0.3],
       [4.5, 1.3, 0.3],
       [4.4, 1.3, 0.2],
       [5. , 1.6, 0.6],
       [5.1, 1.9, 0.4],
       [4.8, 1.4, 0.3],
       [5.1, 1.6, 0.2],
       [4.6, 1.4, 0.2],
       [5.3, 1.5, 0.2],
       [5. , 1.4, 0.2],
       [7. , 4.7, 1.4],
       [6.4, 4.5, 1.5],
       [6.9, 4.9, 1.5],
       [5.5, 4. , 1.3],
       [6.5, 4.6, 1.5],
       [5.7, 4.5, 1.3],
       [6.3, 4.7, 1.6],
       [4.9, 3.3, 1. ],
       [6.6, 4.6, 1.3],
       [5.2, 3.9, 1.4],
       [5. , 3.5, 1. ],
       [5.9, 4.2, 1.5],
       [6. , 4. , 1. ],
       [6.1, 4.7, 1.4],
       [5.6, 3.6, 1.3],
       [6.7, 4.4, 1.4],
       [5.6, 4.5, 1.5],
       [5.8, 4.1, 1. ],
       [6.2, 4.5, 1.5],
       [5.6, 3.9, 1.1],
       [5.9, 4.8, 1.8],
       [6.1, 4. , 1.3],
       [6.3, 4.9, 1.5],
       [6.1, 4.7, 1.2],
       [6.4, 4.3, 1.3],
       [6.6, 4.4, 1.4],
       [6.8, 4.8, 1.4],
       [6.7, 5. , 1.7],
       [6. , 4.5, 1.5],
       [5.7, 3.5, 1. ],
       [5.5, 3.8, 1.1],
       [5.5, 3.7, 1. ],
       [5.8, 3.9, 1.2],
       [6. , 5.1, 1.6],
       [5.4, 4.5, 1.5],
       [6. , 4.5, 1.6],
       [6.7, 4.7, 1.5],
       [6.3, 4.4, 1.3],
       [5.6, 4.1, 1.3],
       [5.5, 4. , 1.3],
       [5.5, 4.4, 1.2],
       [6.1, 4.6, 1.4],
       [5.8, 4. , 1.2],
       [5. , 3.3, 1. ],
       [5.6, 4.2, 1.3],
       [5.7, 4.2, 1.2],
       [5.7, 4.2, 1.3],
       [6.2, 4.3, 1.3],
       [5.1, 3. , 1.1],
       [5.7, 4.1, 1.3],
       [6.3, 6. , 2.5],
       [5.8, 5.1, 1.9],
       [7.1, 5.9, 2.1],
       [6.3, 5.6, 1.8],
       [6.5, 5.8, 2.2],
       [7.6, 6.6, 2.1],
       [4.9, 4.5, 1.7],
       [7.3, 6.3, 1.8],
       [6.7, 5.8, 1.8],
       [7.2, 6.1, 2.5],
       [6.5, 5.1, 2. ],
       [6.4, 5.3, 1.9],
       [6.8, 5.5, 2.1],
       [5.7, 5. , 2. ],
       [5.8, 5.1, 2.4],
       [6.4, 5.3, 2.3],
       [6.5, 5.5, 1.8],
       [7.7, 6.7, 2.2],
       [7.7, 6.9, 2.3],
       [6. , 5. , 1.5],
       [6.9, 5.7, 2.3],
       [5.6, 4.9, 2. ],
       [7.7, 6.7, 2. ],
       [6.3, 4.9, 1.8],
       [6.7, 5.7, 2.1],
       [7.2, 6. , 1.8],
       [6.2, 4.8, 1.8],
       [6.1, 4.9, 1.8],
       [6.4, 5.6, 2.1],
       [7.2, 5.8, 1.6],
       [7.4, 6.1, 1.9],
       [7.9, 6.4, 2. ],
       [6.4, 5.6, 2.2],
       [6.3, 5.1, 1.5],
       [6.1, 5.6, 1.4],
       [7.7, 6.1, 2.3],
       [6.3, 5.6, 2.4],
       [6.4, 5.5, 1.8],
       [6. , 4.8, 1.8],
       [6.9, 5.4, 2.1],
       [6.7, 5.6, 2.4],
       [6.9, 5.1, 2.3],
       [5.8, 5.1, 1.9],
       [6.8, 5.9, 2.3],
       [6.7, 5.7, 2.5],
       [6.7, 5.2, 2.3],
       [6.3, 5. , 1.9],
       [6.5, 5.2, 2. ],
       [6.2, 5.4, 2.3],
       [5.9, 5.1, 1.8]])

RFE

from sklearn.feature_selection import RFE
from sklearn.ensemble import RandomForestClassifier

model=RandomForestClassifier(n_estimators=100)
RFE(model,n_features_to_select=2).fit_transform(x,y)
array([[1.4, 0.2],
       [1.4, 0.2],
       [1.3, 0.2],
       [1.5, 0.2],
       [1.4, 0.2],
       [1.7, 0.4],
       [1.4, 0.3],
       [1.5, 0.2],
       [1.4, 0.2],
       [1.5, 0.1],
       [1.5, 0.2],
       [1.6, 0.2],
       [1.4, 0.1],
       [1.1, 0.1],
       [1.2, 0.2],
       [1.5, 0.4],
       [1.3, 0.4],
       [1.4, 0.3],
       [1.7, 0.3],
       [1.5, 0.3],
       [1.7, 0.2],
       [1.5, 0.4],
       [1. , 0.2],
       [1.7, 0.5],
       [1.9, 0.2],
       [1.6, 0.2],
       [1.6, 0.4],
       [1.5, 0.2],
       [1.4, 0.2],
       [1.6, 0.2],
       [1.6, 0.2],
       [1.5, 0.4],
       [1.5, 0.1],
       [1.4, 0.2],
       [1.5, 0.2],
       [1.2, 0.2],
       [1.3, 0.2],
       [1.4, 0.1],
       [1.3, 0.2],
       [1.5, 0.2],
       [1.3, 0.3],
       [1.3, 0.3],
       [1.3, 0.2],
       [1.6, 0.6],
       [1.9, 0.4],
       [1.4, 0.3],
       [1.6, 0.2],
       [1.4, 0.2],
       [1.5, 0.2],
       [1.4, 0.2],
       [4.7, 1.4],
       [4.5, 1.5],
       [4.9, 1.5],
       [4. , 1.3],
       [4.6, 1.5],
       [4.5, 1.3],
       [4.7, 1.6],
       [3.3, 1. ],
       [4.6, 1.3],
       [3.9, 1.4],
       [3.5, 1. ],
       [4.2, 1.5],
       [4. , 1. ],
       [4.7, 1.4],
       [3.6, 1.3],
       [4.4, 1.4],
       [4.5, 1.5],
       [4.1, 1. ],
       [4.5, 1.5],
       [3.9, 1.1],
       [4.8, 1.8],
       [4. , 1.3],
       [4.9, 1.5],
       [4.7, 1.2],
       [4.3, 1.3],
       [4.4, 1.4],
       [4.8, 1.4],
       [5. , 1.7],
       [4.5, 1.5],
       [3.5, 1. ],
       [3.8, 1.1],
       [3.7, 1. ],
       [3.9, 1.2],
       [5.1, 1.6],
       [4.5, 1.5],
       [4.5, 1.6],
       [4.7, 1.5],
       [4.4, 1.3],
       [4.1, 1.3],
       [4. , 1.3],
       [4.4, 1.2],
       [4.6, 1.4],
       [4. , 1.2],
       [3.3, 1. ],
       [4.2, 1.3],
       [4.2, 1.2],
       [4.2, 1.3],
       [4.3, 1.3],
       [3. , 1.1],
       [4.1, 1.3],
       [6. , 2.5],
       [5.1, 1.9],
       [5.9, 2.1],
       [5.6, 1.8],
       [5.8, 2.2],
       [6.6, 2.1],
       [4.5, 1.7],
       [6.3, 1.8],
       [5.8, 1.8],
       [6.1, 2.5],
       [5.1, 2. ],
       [5.3, 1.9],
       [5.5, 2.1],
       [5. , 2. ],
       [5.1, 2.4],
       [5.3, 2.3],
       [5.5, 1.8],
       [6.7, 2.2],
       [6.9, 2.3],
       [5. , 1.5],
       [5.7, 2.3],
       [4.9, 2. ],
       [6.7, 2. ],
       [4.9, 1.8],
       [5.7, 2.1],
       [6. , 1.8],
       [4.8, 1.8],
       [4.9, 1.8],
       [5.6, 2.1],
       [5.8, 1.6],
       [6.1, 1.9],
       [6.4, 2. ],
       [5.6, 2.2],
       [5.1, 1.5],
       [5.6, 1.4],
       [6.1, 2.3],
       [5.6, 2.4],
       [5.5, 1.8],
       [4.8, 1.8],
       [5.4, 2.1],
       [5.6, 2.4],
       [5.1, 2.3],
       [5.1, 1.9],
       [5.9, 2.3],
       [5.7, 2.5],
       [5.2, 2.3],
       [5. , 1.9],
       [5.2, 2. ],
       [5.4, 2.3],
       [5.1, 1.8]])

SelectFromModel

from sklearn.feature_selection import SelectFromModel

model=RandomForestClassifier(n_estimators=100)

SelectFromModel(model,threshold=0.1).fit_transform(x,y)
array([[1.4, 0.2],
       [1.4, 0.2],
       [1.3, 0.2],
       [1.5, 0.2],
       [1.4, 0.2],
       [1.7, 0.4],
       [1.4, 0.3],
       [1.5, 0.2],
       [1.4, 0.2],
       [1.5, 0.1],
       [1.5, 0.2],
       [1.6, 0.2],
       [1.4, 0.1],
       [1.1, 0.1],
       [1.2, 0.2],
       [1.5, 0.4],
       [1.3, 0.4],
       [1.4, 0.3],
       [1.7, 0.3],
       [1.5, 0.3],
       [1.7, 0.2],
       [1.5, 0.4],
       [1. , 0.2],
       [1.7, 0.5],
       [1.9, 0.2],
       [1.6, 0.2],
       [1.6, 0.4],
       [1.5, 0.2],
       [1.4, 0.2],
       [1.6, 0.2],
       [1.6, 0.2],
       [1.5, 0.4],
       [1.5, 0.1],
       [1.4, 0.2],
       [1.5, 0.2],
       [1.2, 0.2],
       [1.3, 0.2],
       [1.4, 0.1],
       [1.3, 0.2],
       [1.5, 0.2],
       [1.3, 0.3],
       [1.3, 0.3],
       [1.3, 0.2],
       [1.6, 0.6],
       [1.9, 0.4],
       [1.4, 0.3],
       [1.6, 0.2],
       [1.4, 0.2],
       [1.5, 0.2],
       [1.4, 0.2],
       [4.7, 1.4],
       [4.5, 1.5],
       [4.9, 1.5],
       [4. , 1.3],
       [4.6, 1.5],
       [4.5, 1.3],
       [4.7, 1.6],
       [3.3, 1. ],
       [4.6, 1.3],
       [3.9, 1.4],
       [3.5, 1. ],
       [4.2, 1.5],
       [4. , 1. ],
       [4.7, 1.4],
       [3.6, 1.3],
       [4.4, 1.4],
       [4.5, 1.5],
       [4.1, 1. ],
       [4.5, 1.5],
       [3.9, 1.1],
       [4.8, 1.8],
       [4. , 1.3],
       [4.9, 1.5],
       [4.7, 1.2],
       [4.3, 1.3],
       [4.4, 1.4],
       [4.8, 1.4],
       [5. , 1.7],
       [4.5, 1.5],
       [3.5, 1. ],
       [3.8, 1.1],
       [3.7, 1. ],
       [3.9, 1.2],
       [5.1, 1.6],
       [4.5, 1.5],
       [4.5, 1.6],
       [4.7, 1.5],
       [4.4, 1.3],
       [4.1, 1.3],
       [4. , 1.3],
       [4.4, 1.2],
       [4.6, 1.4],
       [4. , 1.2],
       [3.3, 1. ],
       [4.2, 1.3],
       [4.2, 1.2],
       [4.2, 1.3],
       [4.3, 1.3],
       [3. , 1.1],
       [4.1, 1.3],
       [6. , 2.5],
       [5.1, 1.9],
       [5.9, 2.1],
       [5.6, 1.8],
       [5.8, 2.2],
       [6.6, 2.1],
       [4.5, 1.7],
       [6.3, 1.8],
       [5.8, 1.8],
       [6.1, 2.5],
       [5.1, 2. ],
       [5.3, 1.9],
       [5.5, 2.1],
       [5. , 2. ],
       [5.1, 2.4],
       [5.3, 2.3],
       [5.5, 1.8],
       [6.7, 2.2],
       [6.9, 2.3],
       [5. , 1.5],
       [5.7, 2.3],
       [4.9, 2. ],
       [6.7, 2. ],
       [4.9, 1.8],
       [5.7, 2.1],
       [6. , 1.8],
       [4.8, 1.8],
       [4.9, 1.8],
       [5.6, 2.1],
       [5.8, 1.6],
       [6.1, 1.9],
       [6.4, 2. ],
       [5.6, 2.2],
       [5.1, 1.5],
       [5.6, 1.4],
       [6.1, 2.3],
       [5.6, 2.4],
       [5.5, 1.8],
       [4.8, 1.8],
       [5.4, 2.1],
       [5.6, 2.4],
       [5.1, 2.3],
       [5.1, 1.9],
       [5.9, 2.3],
       [5.7, 2.5],
       [5.2, 2.3],
       [5. , 1.9],
       [5.2, 2. ],
       [5.4, 2.3],
       [5.1, 1.8]])

线性降维

PCA主成分分析法

from sklearn.decomposition import PCA

PCA(n_components=2).fit_transform(x)
array([[-2.68412563,  0.31939725],
       [-2.71414169, -0.17700123],
       [-2.88899057, -0.14494943],
       [-2.74534286, -0.31829898],
       [-2.72871654,  0.32675451],
       [-2.28085963,  0.74133045],
       [-2.82053775, -0.08946138],
       [-2.62614497,  0.16338496],
       [-2.88638273, -0.57831175],
       [-2.6727558 , -0.11377425],
       [-2.50694709,  0.6450689 ],
       [-2.61275523,  0.01472994],
       [-2.78610927, -0.235112  ],
       [-3.22380374, -0.51139459],
       [-2.64475039,  1.17876464],
       [-2.38603903,  1.33806233],
       [-2.62352788,  0.81067951],
       [-2.64829671,  0.31184914],
       [-2.19982032,  0.87283904],
       [-2.5879864 ,  0.51356031],
       [-2.31025622,  0.39134594],
       [-2.54370523,  0.43299606],
       [-3.21593942,  0.13346807],
       [-2.30273318,  0.09870885],
       [-2.35575405, -0.03728186],
       [-2.50666891, -0.14601688],
       [-2.46882007,  0.13095149],
       [-2.56231991,  0.36771886],
       [-2.63953472,  0.31203998],
       [-2.63198939, -0.19696122],
       [-2.58739848, -0.20431849],
       [-2.4099325 ,  0.41092426],
       [-2.64886233,  0.81336382],
       [-2.59873675,  1.09314576],
       [-2.63692688, -0.12132235],
       [-2.86624165,  0.06936447],
       [-2.62523805,  0.59937002],
       [-2.80068412,  0.26864374],
       [-2.98050204, -0.48795834],
       [-2.59000631,  0.22904384],
       [-2.77010243,  0.26352753],
       [-2.84936871, -0.94096057],
       [-2.99740655, -0.34192606],
       [-2.40561449,  0.18887143],
       [-2.20948924,  0.43666314],
       [-2.71445143, -0.2502082 ],
       [-2.53814826,  0.50377114],
       [-2.83946217, -0.22794557],
       [-2.54308575,  0.57941002],
       [-2.70335978,  0.10770608],
       [ 1.28482569,  0.68516047],
       [ 0.93248853,  0.31833364],
       [ 1.46430232,  0.50426282],
       [ 0.18331772, -0.82795901],
       [ 1.08810326,  0.07459068],
       [ 0.64166908, -0.41824687],
       [ 1.09506066,  0.28346827],
       [-0.74912267, -1.00489096],
       [ 1.04413183,  0.2283619 ],
       [-0.0087454 , -0.72308191],
       [-0.50784088, -1.26597119],
       [ 0.51169856, -0.10398124],
       [ 0.26497651, -0.55003646],
       [ 0.98493451, -0.12481785],
       [-0.17392537, -0.25485421],
       [ 0.92786078,  0.46717949],
       [ 0.66028376, -0.35296967],
       [ 0.23610499, -0.33361077],
       [ 0.94473373, -0.54314555],
       [ 0.04522698, -0.58383438],
       [ 1.11628318, -0.08461685],
       [ 0.35788842, -0.06892503],
       [ 1.29818388, -0.32778731],
       [ 0.92172892, -0.18273779],
       [ 0.71485333,  0.14905594],
       [ 0.90017437,  0.32850447],
       [ 1.33202444,  0.24444088],
       [ 1.55780216,  0.26749545],
       [ 0.81329065, -0.1633503 ],
       [-0.30558378, -0.36826219],
       [-0.06812649, -0.70517213],
       [-0.18962247, -0.68028676],
       [ 0.13642871, -0.31403244],
       [ 1.38002644, -0.42095429],
       [ 0.58800644, -0.48428742],
       [ 0.80685831,  0.19418231],
       [ 1.22069088,  0.40761959],
       [ 0.81509524, -0.37203706],
       [ 0.24595768, -0.2685244 ],
       [ 0.16641322, -0.68192672],
       [ 0.46480029, -0.67071154],
       [ 0.8908152 , -0.03446444],
       [ 0.23054802, -0.40438585],
       [-0.70453176, -1.01224823],
       [ 0.35698149, -0.50491009],
       [ 0.33193448, -0.21265468],
       [ 0.37621565, -0.29321893],
       [ 0.64257601,  0.01773819],
       [-0.90646986, -0.75609337],
       [ 0.29900084, -0.34889781],
       [ 2.53119273, -0.00984911],
       [ 1.41523588, -0.57491635],
       [ 2.61667602,  0.34390315],
       [ 1.97153105, -0.1797279 ],
       [ 2.35000592, -0.04026095],
       [ 3.39703874,  0.55083667],
       [ 0.52123224, -1.19275873],
       [ 2.93258707,  0.3555    ],
       [ 2.32122882, -0.2438315 ],
       [ 2.91675097,  0.78279195],
       [ 1.66177415,  0.24222841],
       [ 1.80340195, -0.21563762],
       [ 2.1655918 ,  0.21627559],
       [ 1.34616358, -0.77681835],
       [ 1.58592822, -0.53964071],
       [ 1.90445637,  0.11925069],
       [ 1.94968906,  0.04194326],
       [ 3.48705536,  1.17573933],
       [ 3.79564542,  0.25732297],
       [ 1.30079171, -0.76114964],
       [ 2.42781791,  0.37819601],
       [ 1.19900111, -0.60609153],
       [ 3.49992004,  0.4606741 ],
       [ 1.38876613, -0.20439933],
       [ 2.2754305 ,  0.33499061],
       [ 2.61409047,  0.56090136],
       [ 1.25850816, -0.17970479],
       [ 1.29113206, -0.11666865],
       [ 2.12360872, -0.20972948],
       [ 2.38800302,  0.4646398 ],
       [ 2.84167278,  0.37526917],
       [ 3.23067366,  1.37416509],
       [ 2.15943764, -0.21727758],
       [ 1.44416124, -0.14341341],
       [ 1.78129481, -0.49990168],
       [ 3.07649993,  0.68808568],
       [ 2.14424331,  0.1400642 ],
       [ 1.90509815,  0.04930053],
       [ 1.16932634, -0.16499026],
       [ 2.10761114,  0.37228787],
       [ 2.31415471,  0.18365128],
       [ 1.9222678 ,  0.40920347],
       [ 1.41523588, -0.57491635],
       [ 2.56301338,  0.2778626 ],
       [ 2.41874618,  0.3047982 ],
       [ 1.94410979,  0.1875323 ],
       [ 1.52716661, -0.37531698],
       [ 1.76434572,  0.07885885],
       [ 1.90094161,  0.11662796],
       [ 1.39018886, -0.28266094]])

LDA线性判别分析法

from sklearn.discriminant_analysis import LinearDiscriminantAnalysis as LDA

LDA(n_components=2).fit_transform(x,y)
array([[ 8.06179978e+00,  3.00420621e-01],
       [ 7.12868772e+00, -7.86660426e-01],
       [ 7.48982797e+00, -2.65384488e-01],
       [ 6.81320057e+00, -6.70631068e-01],
       [ 8.13230933e+00,  5.14462530e-01],
       [ 7.70194674e+00,  1.46172097e+00],
       [ 7.21261762e+00,  3.55836209e-01],
       [ 7.60529355e+00, -1.16338380e-02],
       [ 6.56055159e+00, -1.01516362e+00],
       [ 7.34305989e+00, -9.47319209e-01],
       [ 8.39738652e+00,  6.47363392e-01],
       [ 7.21929685e+00, -1.09646389e-01],
       [ 7.32679599e+00, -1.07298943e+00],
       [ 7.57247066e+00, -8.05464137e-01],
       [ 9.84984300e+00,  1.58593698e+00],
       [ 9.15823890e+00,  2.73759647e+00],
       [ 8.58243141e+00,  1.83448945e+00],
       [ 7.78075375e+00,  5.84339407e-01],
       [ 8.07835876e+00,  9.68580703e-01],
       [ 8.02097451e+00,  1.14050366e+00],
       [ 7.49680227e+00, -1.88377220e-01],
       [ 7.58648117e+00,  1.20797032e+00],
       [ 8.68104293e+00,  8.77590154e-01],
       [ 6.25140358e+00,  4.39696367e-01],
       [ 6.55893336e+00, -3.89222752e-01],
       [ 6.77138315e+00, -9.70634453e-01],
       [ 6.82308032e+00,  4.63011612e-01],
       [ 7.92461638e+00,  2.09638715e-01],
       [ 7.99129024e+00,  8.63787128e-02],
       [ 6.82946447e+00, -5.44960851e-01],
       [ 6.75895493e+00, -7.59002759e-01],
       [ 7.37495254e+00,  5.65844592e-01],
       [ 9.12634625e+00,  1.22443267e+00],
       [ 9.46768199e+00,  1.82522635e+00],
       [ 7.06201386e+00, -6.63400423e-01],
       [ 7.95876243e+00, -1.64961722e-01],
       [ 8.61367201e+00,  4.03253602e-01],
       [ 8.33041759e+00,  2.28133530e-01],
       [ 6.93412007e+00, -7.05519379e-01],
       [ 7.68823131e+00, -9.22362309e-03],
       [ 7.91793715e+00,  6.75121313e-01],
       [ 5.66188065e+00, -1.93435524e+00],
       [ 7.24101468e+00, -2.72615132e-01],
       [ 6.41443556e+00,  1.24730131e+00],
       [ 6.85944381e+00,  1.05165396e+00],
       [ 6.76470393e+00, -5.05151855e-01],
       [ 8.08189937e+00,  7.63392750e-01],
       [ 7.18676904e+00, -3.60986823e-01],
       [ 8.31444876e+00,  6.44953177e-01],
       [ 7.67196741e+00, -1.34893840e-01],
       [-1.45927545e+00,  2.85437643e-02],
       [-1.79770574e+00,  4.84385502e-01],
       [-2.41694888e+00, -9.27840307e-02],
       [-2.26247349e+00, -1.58725251e+00],
       [-2.54867836e+00, -4.72204898e-01],
       [-2.42996725e+00, -9.66132066e-01],
       [-2.44848456e+00,  7.95961954e-01],
       [-2.22666513e-01, -1.58467318e+00],
       [-1.75020123e+00, -8.21180130e-01],
       [-1.95842242e+00, -3.51563753e-01],
       [-1.19376031e+00, -2.63445570e+00],
       [-1.85892567e+00,  3.19006544e-01],
       [-1.15809388e+00, -2.64340991e+00],
       [-2.66605725e+00, -6.42504540e-01],
       [-3.78367218e-01,  8.66389312e-02],
       [-1.20117255e+00,  8.44373592e-02],
       [-2.76810246e+00,  3.21995363e-02],
       [-7.76854039e-01, -1.65916185e+00],
       [-3.49805433e+00, -1.68495616e+00],
       [-1.09042788e+00, -1.62658350e+00],
       [-3.71589615e+00,  1.04451442e+00],
       [-9.97610366e-01, -4.90530602e-01],
       [-3.83525931e+00, -1.40595806e+00],
       [-2.25741249e+00, -1.42679423e+00],
       [-1.25571326e+00, -5.46424197e-01],
       [-1.43755762e+00, -1.34424979e-01],
       [-2.45906137e+00, -9.35277280e-01],
       [-3.51848495e+00,  1.60588866e-01],
       [-2.58979871e+00, -1.74611728e-01],
       [ 3.07487884e-01, -1.31887146e+00],
       [-1.10669179e+00, -1.75225371e+00],
       [-6.05524589e-01, -1.94298038e+00],
       [-8.98703769e-01, -9.04940034e-01],
       [-4.49846635e+00, -8.82749915e-01],
       [-2.93397799e+00,  2.73791065e-02],
       [-2.10360821e+00,  1.19156767e+00],
       [-2.14258208e+00,  8.87797815e-02],
       [-2.47945603e+00, -1.94073927e+00],
       [-1.32552574e+00, -1.62869550e-01],
       [-1.95557887e+00, -1.15434826e+00],
       [-2.40157020e+00, -1.59458341e+00],
       [-2.29248878e+00, -3.32860296e-01],
       [-1.27227224e+00, -1.21458428e+00],
       [-2.93176055e-01, -1.79871509e+00],
       [-2.00598883e+00, -9.05418042e-01],
       [-1.18166311e+00, -5.37570242e-01],
       [-1.61615645e+00, -4.70103580e-01],
       [-1.42158879e+00, -5.51244626e-01],
       [ 4.75973788e-01, -7.99905482e-01],
       [-1.54948259e+00, -5.93363582e-01],
       [-7.83947399e+00,  2.13973345e+00],
       [-5.50747997e+00, -3.58139892e-02],
       [-6.29200850e+00,  4.67175777e-01],
       [-5.60545633e+00, -3.40738058e-01],
       [-6.85055995e+00,  8.29825394e-01],
       [-7.41816784e+00, -1.73117995e-01],
       [-4.67799541e+00, -4.99095015e-01],
       [-6.31692685e+00, -9.68980756e-01],
       [-6.32773684e+00, -1.38328993e+00],
       [-6.85281335e+00,  2.71758963e+00],
       [-4.44072512e+00,  1.34723692e+00],
       [-5.45009572e+00, -2.07736942e-01],
       [-5.66033713e+00,  8.32713617e-01],
       [-5.95823722e+00, -9.40175447e-02],
       [-6.75926282e+00,  1.60023206e+00],
       [-5.80704331e+00,  2.01019882e+00],
       [-5.06601233e+00, -2.62733839e-02],
       [-6.60881882e+00,  1.75163587e+00],
       [-9.17147486e+00, -7.48255067e-01],
       [-4.76453569e+00, -2.15573720e+00],
       [-6.27283915e+00,  1.64948141e+00],
       [-5.36071189e+00,  6.46120732e-01],
       [-7.58119982e+00, -9.80722934e-01],
       [-4.37150279e+00, -1.21297458e-01],
       [-5.72317531e+00,  1.29327553e+00],
       [-5.27915920e+00, -4.24582377e-02],
       [-4.08087208e+00,  1.85936572e-01],
       [-4.07703640e+00,  5.23238483e-01],
       [-6.51910397e+00,  2.96976389e-01],
       [-4.58371942e+00, -8.56815813e-01],
       [-6.22824009e+00, -7.12719638e-01],
       [-5.22048773e+00,  1.46819509e+00],
       [-6.80015000e+00,  5.80895175e-01],
       [-3.81515972e+00, -9.42985932e-01],
       [-5.10748966e+00, -2.13059000e+00],
       [-6.79671631e+00,  8.63090395e-01],
       [-6.52449599e+00,  2.44503527e+00],
       [-4.99550279e+00,  1.87768525e-01],
       [-3.93985300e+00,  6.14020389e-01],
       [-5.20383090e+00,  1.14476808e+00],
       [-6.65308685e+00,  1.80531976e+00],
       [-5.10555946e+00,  1.99218201e+00],
       [-5.50747997e+00, -3.58139892e-02],
       [-6.79601924e+00,  1.46068695e+00],
       [-6.84735943e+00,  2.42895067e+00],
       [-5.64500346e+00,  1.67771734e+00],
       [-5.17956460e+00, -3.63475041e-01],
       [-4.96774090e+00,  8.21140550e-01],
       [-5.88614539e+00,  2.34509051e+00],
       [-4.68315426e+00,  3.32033811e-01]])

赛题特征工程

异常值分析

plt.figure(figsize=(18,10))
plt.boxplot(x=train_data.values,labels=train_data.columns)
plt.hlines([-7.5,7.5],0,40,colors='r')
plt.show()


png

train_data=train_data[train_data['V9']>-7.5]
test_data=test_data[test_data['V9']>-7.5]
display(train_data.describe())
display(test_data.describe())
V0 V1 V2 V3 V4 ... V34 V35 V36 V37 target
count 2886.000000 2886.000000 2886.000000 2886.000000 2886.000000 ... 2886.000000 2886.000000 2886.000000 2886.000000 2886.000000
mean 0.123725 0.056856 0.290340 -0.068364 0.012254 ... 0.006959 0.198513 0.030099 -0.131957 0.127451
std 0.927984 0.941269 0.911231 0.970357 0.888037 ... 1.003411 0.985058 0.970258 1.015666 0.983144
min -4.335000 -5.122000 -3.420000 -3.956000 -4.742000 ... -4.789000 -5.695000 -2.608000 -3.630000 -3.044000
25% -0.292000 -0.224250 -0.310000 -0.652750 -0.385000 ... -0.290000 -0.199750 -0.412750 -0.798750 -0.347500
50% 0.359500 0.273000 0.386000 -0.045000 0.109500 ... 0.160000 0.364000 0.137000 -0.186000 0.314000
75% 0.726000 0.599000 0.918750 0.623500 0.550000 ... 0.273000 0.602000 0.643750 0.493000 0.793750
max 2.121000 1.918000 2.828000 2.457000 2.689000 ... 5.110000 2.324000 5.238000 3.000000 2.538000

8 rows × 39 columns

V0 V1 V2 V3 V4 ... V33 V34 V35 V36 V37
count 1925.000000 1925.000000 1925.000000 1925.000000 1925.000000 ... 1925.000000 1925.000000 1925.000000 1925.000000 1925.000000
mean -0.184404 -0.083912 -0.434762 0.101671 -0.019172 ... -0.011433 -0.009985 -0.296895 -0.046270 0.195735
std 1.073333 1.076670 0.969541 1.034925 1.147286 ... 0.989732 0.995213 0.946896 1.040854 0.940599
min -4.814000 -5.488000 -4.283000 -3.276000 -4.921000 ... -4.627000 -4.789000 -7.477000 -2.608000 -3.346000
25% -0.664000 -0.451000 -0.978000 -0.644000 -0.497000 ... -0.460000 -0.290000 -0.349000 -0.593000 -0.432000
50% 0.065000 0.195000 -0.267000 0.220000 0.118000 ... -0.040000 0.160000 -0.270000 0.083000 0.152000
75% 0.549000 0.589000 0.278000 0.793000 0.610000 ... 0.419000 0.273000 0.364000 0.651000 0.797000
max 2.100000 2.120000 1.946000 2.603000 4.475000 ... 5.465000 5.110000 1.671000 2.861000 3.021000

8 rows × 38 columns

最大值和最小值的归一化

from sklearn.preprocessing import MinMaxScaler

features=[col for col in train_data.columns if col not in ['target']]

Scaler=MinMaxScaler()
Scaler=Scaler.fit(train_data[features])

train_data_scaler=Scaler.transform(train_data[features])
test_data_scaler=Scaler.transform(test_data[features])

train_data_scaler=pd.DataFrame(train_data_scaler)
train_data_scaler.columns=features

test_data_scaler=pd.DataFrame(test_data_scaler)
test_data_scaler.columns=features

train_data_scaler['target']=train_data['target']

display(train_data_scaler.describe())
display(test_data_scaler.describe())
V0 V1 V2 V3 V4 ... V34 V35 V36 V37 target
count 2886.000000 2886.000000 2886.000000 2886.000000 2886.000000 ... 2886.000000 2886.000000 2886.000000 2886.000000 2884.000000
mean 0.690633 0.735633 0.593844 0.606212 0.639787 ... 0.484489 0.734944 0.336235 0.527608 0.127274
std 0.143740 0.133703 0.145844 0.151311 0.119504 ... 0.101365 0.122840 0.123663 0.153192 0.983462
min 0.000000 0.000000 0.000000 0.000000 0.000000 ... 0.000000 0.000000 0.000000 0.000000 -3.044000
25% 0.626239 0.695703 0.497759 0.515087 0.586328 ... 0.454490 0.685279 0.279792 0.427036 -0.348500
50% 0.727153 0.766335 0.609155 0.609855 0.652873 ... 0.499949 0.755580 0.349860 0.519457 0.313000
75% 0.783922 0.812642 0.694422 0.714096 0.712152 ... 0.511365 0.785260 0.414447 0.621870 0.794250
max 1.000000 1.000000 1.000000 1.000000 1.000000 ... 1.000000 1.000000 1.000000 1.000000 2.538000

8 rows × 39 columns

V0 V1 V2 V3 V4 ... V33 V34 V35 V36 V37
count 1925.000000 1925.000000 1925.000000 1925.000000 1925.000000 ... 1925.000000 1925.000000 1925.000000 1925.000000 1925.000000
mean 0.642905 0.715637 0.477791 0.632726 0.635558 ... 0.457349 0.482778 0.673164 0.326501 0.577034
std 0.166253 0.152936 0.155176 0.161379 0.154392 ... 0.098071 0.100537 0.118082 0.132661 0.141870
min -0.074195 -0.051989 -0.138124 0.106035 -0.024088 ... 0.000000 0.000000 -0.222222 0.000000 0.042836
25% 0.568618 0.663494 0.390845 0.516451 0.571256 ... 0.412901 0.454490 0.666667 0.256819 0.482353
50% 0.681537 0.755256 0.504641 0.651177 0.654017 ... 0.454518 0.499949 0.676518 0.342977 0.570437
75% 0.756506 0.811222 0.591869 0.740527 0.720226 ... 0.500000 0.511365 0.755580 0.415371 0.667722
max 0.996747 1.028693 0.858835 1.022766 1.240345 ... 1.000000 1.000000 0.918568 0.697043 1.003167

8 rows × 38 columns

查看数据分布


特征相关性

plt.figure(figsize=(20,16))
column=train_data_scaler.columns.tolist()
mcorr=train_data_scaler[column].corr(method='spearman')
mask=np.zeros_like(mcorr,dtype=np.bool)
mask[np.triu_indices_from(mask)]=True
cmap=sns.diverging_palette(220,10,as_cmap=True)
g=sns.heatmap(mcorr,mask=mask,cmap=cmap,square=True,annot=True,fmt='0.2f')
plt.show()


png

多重共线性分析

from statsmodels.stats.outliers_influence import variance_inflation_factor

new_numerical=['V0','V2','V3','V4','V5','V6','V10','V11','V13','V15','V16','V18','V19','V20','V22','V24','V30','V31','V37']

X=np.matrix(train_data_scaler[new_numerical])

VIF_list=[variance_inflation_factor(X,i) for i in range(X.shape[1])]

VIF_list
[216.73387180903222,
 114.38118723828812,
 27.863778129686356,
 201.96436579080174,
 78.93722825798903,
 151.06983667656212,
 14.519604941508451,
 82.69750284665385,
 28.479378440614585,
 27.759176471505945,
 526.6483470743831,
 23.50166642638334,
 19.920315849901424,
 24.640481765008683,
 11.816055964845381,
 4.958208708452915,
 37.09877416736591,
 298.26442986612767,
 47.854002539887034]

PCA处理

from sklearn.decomposition import PCA

pca=PCA(n_components=0.9)

new_train_pca_90=pca.fit_transform(train_data_scaler.iloc[:,:-1])
new_test_pca_90=pca.fit_transform(test_data_scaler.iloc[:,:-1])

new_train_pca_90=pd.DataFrame(new_train_pca_90)
new_test_pca_90=pd.DataFrame(new_test_pca_90)

new_train_pca_90['target']=train_data_scaler['target']

new_train_pca_90.describe()
0 1 2 3 4 ... 12 13 14 15 target
count 2.886000e+03 2.886000e+03 2.886000e+03 2.886000e+03 2.886000e+03 ... 2.886000e+03 2.886000e+03 2.886000e+03 2.886000e+03 2884.000000
mean -1.969626e-17 -2.954440e-17 1.969626e-17 -4.924066e-17 7.878506e-17 ... -8.001607e-18 -5.908879e-17 -9.848132e-18 1.274102e-16 0.127274
std 3.998976e-01 3.500240e-01 2.938631e-01 2.728023e-01 2.077128e-01 ... 1.193301e-01 1.149758e-01 1.133507e-01 1.019259e-01 0.983462
min -1.071795e+00 -9.429479e-01 -9.948314e-01 -7.103087e-01 -7.703987e-01 ... -4.175153e-01 -4.310613e-01 -4.170535e-01 -3.601627e-01 -3.044000
25% -2.804085e-01 -2.613727e-01 -2.090797e-01 -1.945196e-01 -1.315620e-01 ... -7.139961e-02 -7.474073e-02 -7.709743e-02 -6.603914e-02 -0.348500
50% -1.417104e-02 -1.277241e-02 2.112166e-02 -2.337401e-02 -5.122797e-03 ... -4.140670e-03 1.054915e-03 -1.758387e-03 -7.533392e-04 0.313000
75% 2.287306e-01 2.317720e-01 2.069571e-01 1.657590e-01 1.281660e-01 ... 6.786199e-02 7.574868e-02 7.116829e-02 6.357449e-02 0.794250
max 1.597730e+00 1.382802e+00 1.010250e+00 1.448007e+00 1.034061e+00 ... 5.156118e-01 4.978126e-01 4.673189e-01 4.570870e-01 2.538000

8 rows × 17 columns

new_train_pca_16=pca.fit_transform(train_data_scaler.iloc[:,:-1])
new_test_pca_16=pca.fit_transform(test_data_scaler.iloc[:,:-1])

new_train_pca_16=pd.DataFrame(new_train_pca_16)
new_test_pca_16=pd.DataFrame(new_test_pca_16)

new_train_pca_16['target']=train_data_scaler['target']

模型训练

导入相关库

from sklearn.linear_model import LinearRegression
from sklearn.neighbors import KNeighborsRegressor
from sklearn.tree import DecisionTreeRegressor
from sklearn.ensemble import RandomForestRegressor
from sklearn.svm import SVR
import lightgbm as lgb

from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error

from sklearn.model_selection import learning_curve
from sklearn.model_selection import ShuffleSplit

切分数据

new_train_pca_16=new_train_pca_16.fillna(0)
x=new_train_pca_16[new_test_pca_16.columns]
y=new_train_pca_16['target']

x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.2,random_state=0)

多元线性回归

model=LinearRegression()
model.fit(x_train,y_train)
y_pred=model.predict(x_test)
score=mean_squared_error(y_test,y_pred)
print('多元线性回归:',score)
多元线性回归: 0.2767801458340533

K近邻回归

model=KNeighborsRegressor(n_neighbors=10)
model.fit(x_train,y_train)
y_pred=model.predict(x_test)
score=mean_squared_error(y_test,y_pred)
print('K近邻:',score)
K近邻: 0.2616963992906574

随机森林回归

model=RandomForestRegressor(n_estimators=200)
model.fit(x_train,y_train)
y_pred=model.predict(x_test)
score=mean_squared_error(y_test,y_pred)
print('随机森林回归:',score)
随机森林回归: 0.25248205414117647

LGB回归

model=lgb.LGBMRegressor(
    learning_rate=0.01,
    max_depth=-1,
    n_estimators=5000,
    boosting_type='gbdt',
    random_state=2019,
    objective='regression'
)
model.fit(X=x_train,y=y_train,eval_metric='MSE',verbose=50)
LGBMRegressor(learning_rate=0.01, n_estimators=5000, objective='regression',
              random_state=2019)
y_pred=model.predict(x_test)
score=mean_squared_error(y_test,y_pred)
print('LGB模型回归:',score)
LGB模型回归: 0.2658406071425124

支持向量机回归

model=SVR()
model.fit(x_train,y_train)
y_pred=model.predict(x_test)
score=mean_squared_error(y_test,y_pred)
print('支持向量机回归:',score)
支持向量机回归: 0.23747772569513606

模型验证

欠拟合与过拟合

rng=np.random.RandomState(0)
x=rng.uniform(-3,3,100)
y=0.5*x**2+x+2+np.random.normal(0,1,size=100)

plt.scatter(x,y)
plt.show()
x=x.reshape(-1,1)


png

from sklearn.linear_model import LinearRegression
model=LinearRegression()
model.fit(x,y)
mean_squared_error(y,model.predict(x))
2.9123067960253923
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import PolynomialFeatures
from sklearn.preprocessing import StandardScaler

def PolynomialRegression(degree):
    return Pipeline([('poly',PolynomialFeatures(degree=degree)),
                    ('std_scaler',StandardScaler()),
                    ('lin_reg',LinearRegression())])
poly2_reg=PolynomialRegression(degree=10)
poly2_reg.fit(x,y)
y_pred=poly2_reg.predict(x)
print(mean_squared_error(y,y_pred))
plt.scatter(x,y)
plt.plot(np.sort(x.reshape(1,-1).ravel()),y_pred[np.argsort(x.reshape(1,-1).ravel())],color='r')
plt.show()
1.005649633099633

png

poly2_reg=PolynomialRegression(degree=100)
poly2_reg.fit(x,y)
y_pred=poly2_reg.predict(x)
print(mean_squared_error(y,y_pred))
plt.scatter(x,y)
plt.plot(np.sort(x.reshape(1,-1).ravel()),y_pred[np.argsort(x.reshape(1,-1).ravel())],color='r')
plt.show()
0.5642131672188152

png

交叉验证

简单交叉验证

from sklearn.model_selection import train_test_split

x_train,x_test,y_train,y_test=train_test_split(load_iris().data,load_iris().target,test_size=0.2,random_state=0)

K折交叉验证

from sklearn.model_selection import KFold

kf=KFold(n_splits=10)

kf.split(load_iris().data,load_iris().target)
<generator object _BaseKFold.split at 0x000001766560CF20>

留一法交叉验证

from sklearn.model_selection import LeaveOneOut
loo=LeaveOneOut()

留P法交叉验证

from sklearn.model_selection import LeavePOut
lpo=LeavePOut(p=5)

模型调参

网格搜索

from sklearn.datasets import load_iris
from sklearn.svm import SVC
from sklearn.model_selection import train_test_split

x=load_iris().data
y=load_iris().target

x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.2,random_state=0)

best_score=0

for gamma in [0.001,0.01,0.1,1,10,100]:
    for C in [0.001,0.01,0.1,1,10,100]:
        model=SVC(gamma=gamma,C=C)
        model.fit(x_train,y_train)
        score=model.score(x_test,y_test)
        if score>best_score:
            best_score=score
            best_params={'gramma':gamma,'C':C}

print(best_score,best_params)
1.0 {'gramma': 0.001, 'C': 100}

学习曲线


赛题模型验证和调参

模型正则化

L2范数正则化

from sklearn.linear_model import SGDRegressor
model=SGDRegressor(max_iter=1000,tol=1e-3,penalty='L2',alpha=0.0001)
model.fit(x_train,y_train)
score_train=mean_squared_error(y_train,model.predict(x_train))
score_test=mean_squared_error(y_test,model.predict(x_test))
print('train:',score_train)
print('test:',score_test)
train: 0.05647435493144304
test: 0.05792926777671479

L1范数正则化

from sklearn.linear_model import SGDRegressor
model=SGDRegressor(max_iter=1000,tol=1e-3,penalty='L1',alpha=0.0001)
model.fit(x_train,y_train)
score_train=mean_squared_error(y_train,model.predict(x_train))
score_test=mean_squared_error(y_test,model.predict(x_test))
print('train:',score_train)
print('test:',score_test)
train: 0.05984852253374636
test: 0.05781197002659376

ElasticNet联合L1和L2范数加权正则化

from sklearn.linear_model import SGDRegressor
model=SGDRegressor(max_iter=1000,tol=1e-3,penalty='elasticnet',alpha=0.0001)
model.fit(x_train,y_train)
score_train=mean_squared_error(y_train,model.predict(x_train))
score_test=mean_squared_error(y_test,model.predict(x_test))
print('train:',score_train)
print('test:',score_test)
train: 0.05359655625009887
test: 0.06449737961501686

模型交叉验证

简单交叉验证

# x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.1,random_state=0)

model=SGDRegressor(max_iter=1000,tol=1e-3,penalty='L1',alpha=0.0001)
model.fit(x_train,y_train)
score_train=mean_squared_error(y_train,model.predict(x_train))
score_test=mean_squared_error(y_test,model.predict(x_test))
print('train:',score_train)
print('test:',score_test)
train: 0.05308657115834889
test: 0.061714302326653835
new_train_pca_16=new_train_pca_16.fillna(0)
x=new_train_pca_16[new_test_pca_16.columns]
y=new_train_pca_16['target']

K折交叉验证

from sklearn.model_selection import KFold

kf=KFold(n_splits=10)

for k,(train_index,test_index) in enumerate(kf.split(x)):
    x_train,x_test,y_train,y_test=x.values[train_index],x.values[test_index],y.values[train_index],y.values[test_index]
    model=SGDRegressor(max_iter=1000,tol=1e-3)
    model.fit(x_train,y_train)
    score_train=mean_squared_error(y_train,model.predict(x_train))
    score_test=mean_squared_error(y_test,model.predict(x_test))
    print('{}折 train_score:{:.10f}    test_score:{:.10f}'.format(k,score_train,score_test))
0折 train_score:0.3602318315    test_score:0.1767761698
1折 train_score:0.3501239272    test_score:0.2484806010
2折 train_score:0.3556734961    test_score:0.2017659596
3折 train_score:0.3324155551    test_score:0.4088211803
4折 train_score:0.3573550484    test_score:0.2108892370
5折 train_score:0.3322709623    test_score:0.4482557026
6折 train_score:0.3244468803    test_score:0.5228384581
7折 train_score:0.3288228718    test_score:0.4946368648
8折 train_score:0.3500469469    test_score:0.2672951469
9折 train_score:0.3042545411    test_score:0.7095465815

留一法交叉验证

from sklearn.model_selection import LeaveOneOut

loo=LeaveOneOut()

for k,(train_index,test_index) in enumerate(loo.split(x)):
    x_train,x_test,y_train,y_test=x.values[train_index],x.values[test_index],y.values[train_index],y.values[test_index]
    model=SGDRegressor(max_iter=1000,tol=1e-3)
    model.fit(x_train,y_train)
    score_train=mean_squared_error(y_train,model.predict(x_train))
    score_test=mean_squared_error(y_test,model.predict(x_test))
    print('{} train_score:{:.10f}    test_score:{:.10f}'.format(k,score_train,score_test))
    
    if k>10:
        break
0 train_score:0.3406805076    test_score:0.5057733852
1 train_score:0.3407447403    test_score:0.4344293538
2 train_score:0.3407808103    test_score:0.1584206032
3 train_score:0.3409301300    test_score:0.0324807358
4 train_score:0.3407225085    test_score:0.1596873904
5 train_score:0.3407800526    test_score:0.0046326254
6 train_score:0.3408423258    test_score:0.0320690996
7 train_score:0.3409134343    test_score:0.0560273184
8 train_score:0.3406269465    test_score:0.4012466323
9 train_score:0.3408646877    test_score:0.0149950572
10 train_score:0.3408549372    test_score:0.0269544246
11 train_score:0.3408678993    test_score:0.1228838022

留p法交叉验证

from sklearn.model_selection import LeavePOut

lpo=LeaveOneOut()

for k,(train_index,test_index) in enumerate(lpo.split(x)):
    x_train,x_test,y_train,y_test=x.values[train_index],x.values[test_index],y.values[train_index],y.values[test_index]
    model=SGDRegressor(max_iter=1000,tol=1e-3)
    model.fit(x_train,y_train)
    score_train=mean_squared_error(y_train,model.predict(x_train))
    score_test=mean_squared_error(y_test,model.predict(x_test))
    print('{} train_score:{:.10f}    test_score:{:.10f}'.format(k,score_train,score_test))
    
    if k>10:
        break
0 train_score:0.3407367010    test_score:0.4906048379
1 train_score:0.3408172840    test_score:0.4394575062
2 train_score:0.3408328069    test_score:0.1551440570
3 train_score:0.3409097661    test_score:0.0316359796
4 train_score:0.3408101333    test_score:0.1584800014
5 train_score:0.3403482646    test_score:0.0049208166
6 train_score:0.3408397215    test_score:0.0283428261
7 train_score:0.3407767680    test_score:0.0595601493
8 train_score:0.3408073577    test_score:0.4095043626
9 train_score:0.3408192984    test_score:0.0118659336
10 train_score:0.3408125770    test_score:0.0280156182
11 train_score:0.3407741379    test_score:0.1156643127

模型超参空间及调参

穷举网格搜索

from sklearn.model_selection import GridSearchCV
from sklearn.ensemble import RandomForestRegressor

x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.2,random_state=0)

model=RandomForestRegressor()

params={'n_estimators':[50,100,200],
       'max_depth':[1,2,3]}

GV=GridSearchCV(model,params,cv=10)

GV.fit(x_train,y_train)
GridSearchCV(cv=10, estimator=RandomForestRegressor(),
             param_grid={'max_depth': [1, 2, 3],
                         'n_estimators': [50, 100, 200]})
GV.best_score_
0.5352571593888877
GV.best_params_
{'max_depth': 3, 'n_estimators': 100}
mean_squared_error(y_test,GV.predict(x_test))
0.3555098696794756

随机参数优化

from sklearn.model_selection import RandomizedSearchCV
from sklearn.ensemble import RandomForestRegressor

x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.2,random_state=0)

model=RandomForestRegressor()

params={'n_estimators':[50,100,200],
       'max_depth':[1,2,3]}

RV=RandomizedSearchCV(model,params,cv=10)

RV.fit(x_train,y_train)
RandomizedSearchCV(cv=10, estimator=RandomForestRegressor(),
                   param_distributions={'max_depth': [1, 2, 3],
                                        'n_estimators': [50, 100, 200]})
RV.best_score_
0.5349094783965866
RV.best_params_
{'n_estimators': 50, 'max_depth': 3}
mean_squared_error(y_test,RV.predict(x_test))
0.3606795415655421

学习曲线和验证曲线

学习曲线


特征优化

赛题特征优化

导入数据

train_data=pd.read_csv('data/zhengqi_train.txt',sep='\t',encoding='utf-8')
test_data=pd.read_csv('data/zhengqi_test.txt',sep='\t',encoding='utf-8')

特征构造方法

epsilon=1e-5

func_dict={'add':lambda x,y:x+y,
          'mins':lambda x,y:x-y,
          'multi':lambda x,y:x*y,
          'div':lambda x,y:x/(y+epsilon)
          }

特征构造函数

def make_features(train_data,test_data,func_dict,col_list):
    train_data,test_data=train_data.copy(),test_data.copy()
    for coli in col_list:
        for colj in col_list:
            for func_name,func in func_dict.items():
                for data in [train_data,test_data]:
                    feature=func(data[coli],data[colj])
                    feature_name='-'.join([coli,func_name,colj])
                    data[feature_name]=feature
    return train_data,test_data
train_data2,test_data2=make_features(train_data,test_data,func_dict,test_data.columns)

特征降维处理

from sklearn.decomposition import PCA

pca=PCA(n_components=500)
pca=pca.fit(train_data2.iloc[:,:-1])

train_data2_pca=pca.transform(train_data2.iloc[:,:-1])
test_data2_pca=pca.transform(test_data2)

train_data2_pca=pd.DataFrame(train_data2_pca)
test_data2_pca=pd.DataFrame(test_data2_pca)

train_data2_pca['target']=train_data2['target']

x=train_data2_pca[test_data2_pca.columns].values
y=train_data2_pca['target']

模型训练与评估

from sklearn.model_selection import KFold
from sklearn.metrics import mean_squared_error

import lightgbm as lgb

import numpy as np
Folds=5

kf=KFold(n_splits=Folds,shuffle=True,random_state=2021)

mse_dict={'train_mse':[],'test_mse':[]}
for i,(train_index,test_index) in enumerate(kf.split(x)):
    
    model=lgb.LGBMRegressor(learning_rate=0.01,
                           max_depth=-1,
                           n_estimators=5000,
                           boosting_type='gbdt',
                           random_state=2021,
                           objective='regression')
    
    x_train=x[train_index]
    x_test=x[test_index]
    y_train=y[train_index]
    y_test=y[test_index]
    
    model.fit(X=x_train,
             y=y_train,
             eval_set=[(x_train,y_train),
                      (x_test,y_test)],
             eval_names=['Train','Test'],
             early_stopping_rounds=100,
             eval_metric='MSE',
             verbose=50)
    
    y_train_pred=model.predict(x_train,num_iteration=model.best_iteration_)
    y_test_pred=model.predict(x_test,num_iteration=model.best_iteration_)
    
    print('{}折训练和预测MSE'.format(i+1))
    
    train_mse=mean_squared_error(y_train,y_train_pred)
    test_mse=mean_squared_error(y_test,y_test_pred)
    
    print('train_mse:{:.10f}'.format(train_mse))
    print('test_mse:{:.10f}'.format(test_mse))
    
    mse_dict['train_mse'].append(train_mse)
    mse_dict['test_mse'].append(test_mse)

print('************************************')
print('train_mse:{:.10f}'.format(np.mean(mse_dict['train_mse'])))
print('test_mse:{:.10f}'.format(np.mean(mse_dict['test_mse'])))
Training until validation scores don't improve for 100 rounds
[50]	Train's l2: 0.543717	Test's l2: 0.604572
[100]	Train's l2: 0.340544	Test's l2: 0.463274
[150]	Train's l2: 0.2306	Test's l2: 0.388697
[200]	Train's l2: 0.167484	Test's l2: 0.351103
[250]	Train's l2: 0.127077	Test's l2: 0.332442
[300]	Train's l2: 0.0993325	Test's l2: 0.322074
[350]	Train's l2: 0.079262	Test's l2: 0.315931
[400]	Train's l2: 0.0637016	Test's l2: 0.309216
[450]	Train's l2: 0.0517757	Test's l2: 0.303667
[500]	Train's l2: 0.0424371	Test's l2: 0.300606
[550]	Train's l2: 0.0350781	Test's l2: 0.29846
[600]	Train's l2: 0.0291966	Test's l2: 0.296649
[650]	Train's l2: 0.0243927	Test's l2: 0.295125
[700]	Train's l2: 0.0204512	Test's l2: 0.294314
[750]	Train's l2: 0.01721	Test's l2: 0.294088
[800]	Train's l2: 0.0145537	Test's l2: 0.29318
[850]	Train's l2: 0.0123332	Test's l2: 0.292481
[900]	Train's l2: 0.0104506	Test's l2: 0.291354
[950]	Train's l2: 0.00889746	Test's l2: 0.290487
[1000]	Train's l2: 0.00758584	Test's l2: 0.289841
[1050]	Train's l2: 0.0064809	Test's l2: 0.289542
[1100]	Train's l2: 0.00557043	Test's l2: 0.288911
[1150]	Train's l2: 0.00477429	Test's l2: 0.288043
[1200]	Train's l2: 0.00409921	Test's l2: 0.287434
[1250]	Train's l2: 0.00352492	Test's l2: 0.287135
[1300]	Train's l2: 0.00303538	Test's l2: 0.286735
[1350]	Train's l2: 0.00262049	Test's l2: 0.286454
[1400]	Train's l2: 0.00226543	Test's l2: 0.286244
[1450]	Train's l2: 0.00196362	Test's l2: 0.285955
[1500]	Train's l2: 0.00170203	Test's l2: 0.285766
[1550]	Train's l2: 0.00148613	Test's l2: 0.285561
[1600]	Train's l2: 0.00130007	Test's l2: 0.285492
[1650]	Train's l2: 0.00114392	Test's l2: 0.285355
[1700]	Train's l2: 0.00100922	Test's l2: 0.285303
[1750]	Train's l2: 0.000892295	Test's l2: 0.285215
[1800]	Train's l2: 0.00079264	Test's l2: 0.28507
[1850]	Train's l2: 0.000704515	Test's l2: 0.28501
[1900]	Train's l2: 0.000627791	Test's l2: 0.284935
[1950]	Train's l2: 0.000561643	Test's l2: 0.284884
[2000]	Train's l2: 0.000505995	Test's l2: 0.284834
[2050]	Train's l2: 0.000458034	Test's l2: 0.284834
[2100]	Train's l2: 0.000415711	Test's l2: 0.284781
[2150]	Train's l2: 0.000378973	Test's l2: 0.284741
[2200]	Train's l2: 0.000346808	Test's l2: 0.284702
[2250]	Train's l2: 0.000318028	Test's l2: 0.284677
[2300]	Train's l2: 0.00029307	Test's l2: 0.284681
[2350]	Train's l2: 0.000270541	Test's l2: 0.284679
Early stopping, best iteration is:
[2265]	Train's l2: 0.000310325	Test's l2: 0.284666
1折训练和预测MSE
train_mse:0.0003103246
test_mse:0.2846657916
Training until validation scores don't improve for 100 rounds
[50]	Train's l2: 0.531303	Test's l2: 0.684378
[100]	Train's l2: 0.335423	Test's l2: 0.524272
[150]	Train's l2: 0.228201	Test's l2: 0.442181
[200]	Train's l2: 0.166035	Test's l2: 0.403058
[250]	Train's l2: 0.125805	Test's l2: 0.377363
[300]	Train's l2: 0.0984113	Test's l2: 0.361378
[350]	Train's l2: 0.078351	Test's l2: 0.351406
[400]	Train's l2: 0.0629611	Test's l2: 0.34581
[450]	Train's l2: 0.0511864	Test's l2: 0.341351
[500]	Train's l2: 0.0419425	Test's l2: 0.338046
[550]	Train's l2: 0.0347016	Test's l2: 0.335465
[600]	Train's l2: 0.0288848	Test's l2: 0.333737
[650]	Train's l2: 0.0240954	Test's l2: 0.331649
[700]	Train's l2: 0.0201629	Test's l2: 0.330009
[750]	Train's l2: 0.0169717	Test's l2: 0.328117
[800]	Train's l2: 0.0143134	Test's l2: 0.327074
[850]	Train's l2: 0.0121158	Test's l2: 0.326252
[900]	Train's l2: 0.0102999	Test's l2: 0.325618
[950]	Train's l2: 0.0087568	Test's l2: 0.325154
[1000]	Train's l2: 0.00746425	Test's l2: 0.324834
[1050]	Train's l2: 0.006398	Test's l2: 0.324458
[1100]	Train's l2: 0.00549152	Test's l2: 0.323998
[1150]	Train's l2: 0.0047352	Test's l2: 0.323608
[1200]	Train's l2: 0.00409785	Test's l2: 0.323079
[1250]	Train's l2: 0.00356497	Test's l2: 0.322605
[1300]	Train's l2: 0.00310907	Test's l2: 0.322257
[1350]	Train's l2: 0.00272473	Test's l2: 0.322146
[1400]	Train's l2: 0.00239642	Test's l2: 0.321893
[1450]	Train's l2: 0.00211186	Test's l2: 0.321744
[1500]	Train's l2: 0.00187086	Test's l2: 0.321672
[1550]	Train's l2: 0.00166422	Test's l2: 0.321655
[1600]	Train's l2: 0.00148658	Test's l2: 0.321614
[1650]	Train's l2: 0.0013316	Test's l2: 0.321636
[1700]	Train's l2: 0.00119632	Test's l2: 0.321584
[1750]	Train's l2: 0.00107889	Test's l2: 0.321541
[1800]	Train's l2: 0.000979346	Test's l2: 0.321536
Early stopping, best iteration is:
[1733]	Train's l2: 0.00111674	Test's l2: 0.321515
2折训练和预测MSE
train_mse:0.0011167390
test_mse:0.3215149248
Training until validation scores don't improve for 100 rounds
[50]	Train's l2: 0.540152	Test's l2: 0.63719
[100]	Train's l2: 0.339946	Test's l2: 0.471552
[150]	Train's l2: 0.23119	Test's l2: 0.395507
[200]	Train's l2: 0.167178	Test's l2: 0.35583
[250]	Train's l2: 0.126276	Test's l2: 0.338397
[300]	Train's l2: 0.0984726	Test's l2: 0.326181
[350]	Train's l2: 0.078372	Test's l2: 0.318223
[400]	Train's l2: 0.0631969	Test's l2: 0.313255
[450]	Train's l2: 0.0516128	Test's l2: 0.309614
[500]	Train's l2: 0.042384	Test's l2: 0.307441
[550]	Train's l2: 0.035031	Test's l2: 0.305475
[600]	Train's l2: 0.0291888	Test's l2: 0.304062
[650]	Train's l2: 0.0244644	Test's l2: 0.302963
[700]	Train's l2: 0.020578	Test's l2: 0.302588
[750]	Train's l2: 0.0174154	Test's l2: 0.302293
[800]	Train's l2: 0.0147865	Test's l2: 0.302077
[850]	Train's l2: 0.0126023	Test's l2: 0.301957
[900]	Train's l2: 0.0107725	Test's l2: 0.301826
[950]	Train's l2: 0.00925973	Test's l2: 0.301487
[1000]	Train's l2: 0.00798974	Test's l2: 0.301299
[1050]	Train's l2: 0.00690221	Test's l2: 0.301037
[1100]	Train's l2: 0.00598077	Test's l2: 0.300697
[1150]	Train's l2: 0.00519833	Test's l2: 0.300648
[1200]	Train's l2: 0.00452834	Test's l2: 0.300608
[1250]	Train's l2: 0.00396283	Test's l2: 0.300488
[1300]	Train's l2: 0.00347648	Test's l2: 0.300355
[1350]	Train's l2: 0.00306102	Test's l2: 0.300381
[1400]	Train's l2: 0.00269621	Test's l2: 0.300229
[1450]	Train's l2: 0.0023818	Test's l2: 0.300237
[1500]	Train's l2: 0.0021141	Test's l2: 0.300083
[1550]	Train's l2: 0.00187851	Test's l2: 0.300017
[1600]	Train's l2: 0.00167574	Test's l2: 0.299953
[1650]	Train's l2: 0.00149718	Test's l2: 0.299943
[1700]	Train's l2: 0.00134817	Test's l2: 0.299958
[1750]	Train's l2: 0.00121449	Test's l2: 0.299946
Early stopping, best iteration is:
[1663]	Train's l2: 0.00145717	Test's l2: 0.299902
3折训练和预测MSE
train_mse:0.0014571665
test_mse:0.2999015382
Training until validation scores don't improve for 100 rounds
[50]	Train's l2: 0.553251	Test's l2: 0.57018
[100]	Train's l2: 0.3481	Test's l2: 0.426055
[150]	Train's l2: 0.237178	Test's l2: 0.358121
[200]	Train's l2: 0.172136	Test's l2: 0.321284
[250]	Train's l2: 0.130327	Test's l2: 0.30248
[300]	Train's l2: 0.101715	Test's l2: 0.290685
[350]	Train's l2: 0.0805702	Test's l2: 0.282179
[400]	Train's l2: 0.0649358	Test's l2: 0.276455
[450]	Train's l2: 0.0527739	Test's l2: 0.27231
[500]	Train's l2: 0.0433096	Test's l2: 0.269285
[550]	Train's l2: 0.0357324	Test's l2: 0.26767
[600]	Train's l2: 0.0296251	Test's l2: 0.265957
[650]	Train's l2: 0.0246598	Test's l2: 0.264329
[700]	Train's l2: 0.0206447	Test's l2: 0.263283
[750]	Train's l2: 0.0173093	Test's l2: 0.262082
[800]	Train's l2: 0.0145206	Test's l2: 0.261284
[850]	Train's l2: 0.0122394	Test's l2: 0.260971
[900]	Train's l2: 0.0103238	Test's l2: 0.260822
[950]	Train's l2: 0.00874249	Test's l2: 0.260449
[1000]	Train's l2: 0.00743096	Test's l2: 0.26005
[1050]	Train's l2: 0.00629931	Test's l2: 0.259851
[1100]	Train's l2: 0.005356	Test's l2: 0.259677
[1150]	Train's l2: 0.00457325	Test's l2: 0.259395
[1200]	Train's l2: 0.00390414	Test's l2: 0.259323
[1250]	Train's l2: 0.00332433	Test's l2: 0.259174
[1300]	Train's l2: 0.00283924	Test's l2: 0.259046
[1350]	Train's l2: 0.00243486	Test's l2: 0.258849
[1400]	Train's l2: 0.00208991	Test's l2: 0.258884
[1450]	Train's l2: 0.00179522	Test's l2: 0.258815
[1500]	Train's l2: 0.001541	Test's l2: 0.258647
[1550]	Train's l2: 0.00132456	Test's l2: 0.258518
[1600]	Train's l2: 0.00113926	Test's l2: 0.25847
[1650]	Train's l2: 0.000977932	Test's l2: 0.258347
[1700]	Train's l2: 0.000843273	Test's l2: 0.258304
[1750]	Train's l2: 0.000728304	Test's l2: 0.258191
[1800]	Train's l2: 0.000627096	Test's l2: 0.258132
[1850]	Train's l2: 0.000541629	Test's l2: 0.258123
[1900]	Train's l2: 0.000467428	Test's l2: 0.258073
[1950]	Train's l2: 0.000404477	Test's l2: 0.258052
[2000]	Train's l2: 0.000351368	Test's l2: 0.258051
[2050]	Train's l2: 0.000304616	Test's l2: 0.257984
[2100]	Train's l2: 0.000263359	Test's l2: 0.257944
[2150]	Train's l2: 0.00022769	Test's l2: 0.25789
[2200]	Train's l2: 0.000197298	Test's l2: 0.257826
[2250]	Train's l2: 0.000170155	Test's l2: 0.257816
[2300]	Train's l2: 0.000147563	Test's l2: 0.257776
[2350]	Train's l2: 0.000127935	Test's l2: 0.257767
[2400]	Train's l2: 0.000111268	Test's l2: 0.257763
[2450]	Train's l2: 9.69653e-05	Test's l2: 0.257755
[2500]	Train's l2: 8.48729e-05	Test's l2: 0.257736
[2550]	Train's l2: 7.43364e-05	Test's l2: 0.257733
[2600]	Train's l2: 6.49667e-05	Test's l2: 0.257718
[2650]	Train's l2: 5.67423e-05	Test's l2: 0.257705
[2700]	Train's l2: 4.96559e-05	Test's l2: 0.257674
[2750]	Train's l2: 4.34688e-05	Test's l2: 0.257662
[2800]	Train's l2: 3.83567e-05	Test's l2: 0.257652
[2850]	Train's l2: 3.38728e-05	Test's l2: 0.257646
[2900]	Train's l2: 2.98855e-05	Test's l2: 0.257639
[2950]	Train's l2: 2.63891e-05	Test's l2: 0.257639
[3000]	Train's l2: 2.33554e-05	Test's l2: 0.257642
Early stopping, best iteration is:
[2931]	Train's l2: 2.76319e-05	Test's l2: 0.257634
4折训练和预测MSE
train_mse:0.0000276319
test_mse:0.2576340931
Training until validation scores don't improve for 100 rounds
[50]	Train's l2: 0.542659	Test's l2: 0.617169
[100]	Train's l2: 0.340008	Test's l2: 0.477799
[150]	Train's l2: 0.231568	Test's l2: 0.406837
[200]	Train's l2: 0.168562	Test's l2: 0.367475
[250]	Train's l2: 0.127808	Test's l2: 0.346231
[300]	Train's l2: 0.0996046	Test's l2: 0.332399
[350]	Train's l2: 0.079321	Test's l2: 0.324124
[400]	Train's l2: 0.0639138	Test's l2: 0.318926
[450]	Train's l2: 0.051887	Test's l2: 0.31537
[500]	Train's l2: 0.0425211	Test's l2: 0.312224
[550]	Train's l2: 0.0350794	Test's l2: 0.310244
[600]	Train's l2: 0.0291183	Test's l2: 0.309378
[650]	Train's l2: 0.024318	Test's l2: 0.308742
[700]	Train's l2: 0.0203776	Test's l2: 0.307923
[750]	Train's l2: 0.0171659	Test's l2: 0.307359
[800]	Train's l2: 0.01449	Test's l2: 0.306549
[850]	Train's l2: 0.0122634	Test's l2: 0.306337
[900]	Train's l2: 0.01044	Test's l2: 0.30606
[950]	Train's l2: 0.00890911	Test's l2: 0.305977
[1000]	Train's l2: 0.00759587	Test's l2: 0.305823
[1050]	Train's l2: 0.00654359	Test's l2: 0.305626
[1100]	Train's l2: 0.00564639	Test's l2: 0.305201
[1150]	Train's l2: 0.00487897	Test's l2: 0.305092
[1200]	Train's l2: 0.00424035	Test's l2: 0.305018
[1250]	Train's l2: 0.00369461	Test's l2: 0.304932
[1300]	Train's l2: 0.00322024	Test's l2: 0.304962
[1350]	Train's l2: 0.00281733	Test's l2: 0.304944
Early stopping, best iteration is:
[1261]	Train's l2: 0.00358574	Test's l2: 0.304864
5折训练和预测MSE
train_mse:0.0035857405
test_mse:0.3048641005
************************************
train_mse:0.0012995205
test_mse:0.2937160896
posted @ 2021-04-24 20:29  魏宝航  阅读(193)  评论(0编辑  收藏  举报