pandas的group用法 apply、map、agg

Groupby的用法

import pandas as pd
df = pd.DataFrame({'Country':['China','China', 'India', 'India', 'America', 'Japan', 'China', 'India'], 
                   'Income':[10000, 10000, 5000, 5002, 40000, 50000, 8000, 5000],
                    'Age':[5000, 4321, 1234, 4010, 250, 250, 4500, 4321]})
df
Country Income Age
0 China 10000 5000
1 China 10000 4321
2 India 5000 1234
3 India 5002 4010
4 America 40000 250
5 Japan 50000 250
6 China 8000 4500
7 India 5000 4321

按单列进行分组

df_gb = df.groupby('Country')
for index, data in df_gb:
    print(index)
    print(data)
America
   Country  Income  Age
4  America   40000  250
China
  Country  Income   Age
0   China   10000  5000
1   China   10000  4321
6   China    8000  4500
India
  Country  Income   Age
2   India    5000  1234
3   India    5002  4010
7   India    5000  4321
Japan
  Country  Income  Age
5   Japan   50000  250

按多列进行分组

df_gb = df.groupby(['Country', 'Income'])
for (index1, index2), data in df_gb:
    print((index1, index2))
    print(data)
('America', 40000)
   Country  Income  Age
4  America   40000  250
('China', 8000)
  Country  Income   Age
6   China    8000  4500
('China', 10000)
  Country  Income   Age
0   China   10000  5000
1   China   10000  4321
('India', 5000)
  Country  Income   Age
2   India    5000  1234
7   India    5000  4321
('India', 5002)
  Country  Income   Age
3   India    5002  4010
('Japan', 50000)
  Country  Income  Age
5   Japan   50000  250

agg聚合操作

df_agg = df.groupby('Country').agg(['min', 'mean', 'max'])
print(df_agg)
        Income                        Age                   
           min          mean    max   min         mean   max
Country                                                     
America  40000  40000.000000  40000   250   250.000000   250
China     8000   9333.333333  10000  4321  4607.000000  5000
India     5000   5000.666667   5002  1234  3188.333333  4321
Japan    50000  50000.000000  50000   250   250.000000   250
num_agg = {'Age':['min', 'mean', 'max']}
print(df.groupby('Country').agg(num_agg))
          Age                   
          min         mean   max
Country                         
America   250   250.000000   250
China    4321  4607.000000  5000
India    1234  3188.333333  4321
Japan     250   250.000000   250
num_agg = {'Age':['min', 'mean', 'max'], 'Income':['min', 'max']}
print(df.groupby('Country').agg(num_agg))
          Age                    Income       
          min         mean   max    min    max
Country                                       
America   250   250.000000   250  40000  40000
China    4321  4607.000000  5000   8000  10000
India    1234  3188.333333  4321   5000   5002
Japan     250   250.000000   250  50000  50000

Apply

df
Country Income Age
0 China 10000 5000
1 China 10000 4321
2 India 5000 1234
3 India 5002 4010
4 America 40000 250
5 Japan 50000 250
6 China 8000 4500
7 India 5000 4321
df['Age'].apply(lambda x:str(x)[0])
0    5
1    4
2    1
3    4
4    2
5    2
6    4
7    4
Name: Age, dtype: object
posted @ 2021-04-24 20:20  魏宝航  阅读(312)  评论(0编辑  收藏  举报