Hadoop学习:MapReduce实现两张表合并

✌✌✌古人有云,好记性不如烂笔头,千里之行,始于足下,每日千行代码必不可少,每日总结写一写,目标大厂,满怀希望便会所向披靡,哈哈哈!!!✌✌✌

在这里插入图片描述

一、✌题目要求

record表:

ID 城市编号 空气指数
001 03 245
002 02 655
003 05 743
004 04 246
005 02 956
006 01 637
007 05 831
008 03 683
009 02 349
city表:
城市编号 城市名称
-- --
01 长沙
02 株洲
03 湘潭
04 怀化
05 岳阳

目标表:

ID 城市名称 空气指数
001 湘潭 245
002 株洲 655
003 岳阳 743
004 怀化 246
005 株洲 956
006 长沙 637
007 岳阳 831
008 湘潭 683
009 株洲 349

二、✌实现思想

我们将重复字段作为Map的Key,其他属性封装在Bean中作为Value
经过Map后,文件的格式为:
|城市编号| ID |城市名称|空气指数|文件类型|
|--|--|--|--|--|--|
| 1| 006| | 637 |record|
| 1| |长沙 | |city|
| 2| 002| | 655 |record|
| 2 | 005| | 956 |record|
| 2| 009| | 349 |record|
| 2| | 株洲 | |city|
| 3 |001 | | 245 | record|
| 3| 008| | 683 |record|
| 3| | 湘潭| |city|
| 4| 004| | 246 |record|
| 4| | 怀化| |city|
| 5| 003| | 743 |record|
| 5| 007| | 831 |record|
| 5| | 岳阳| |city|

1.将所有属性封装成一个对象,同时实现序列化
2.Map的输入格式应为LongWritable,Text
3.Map的输出格式为Text,Bean
4.Reduce输出格式为Bean,NullWritable

三、✌代码实现

1.✌Bean类

import org.apache.hadoop.io.Writable;

import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;

public class Bean implements Writable {

	//定义属性
    private String id;
    private String pid;
    private int amount;
    private String pname;
    private String type;

	//定义空参构造,为后面反射使用
    public Bean() {
        super();
    }

	//有参构造
    public Bean(String id, String pid, int amount, String pname, String type) {
        this.id = id;
        this.pid = pid;
        this.amount = amount;
        this.pname = pname;
        this.type = type;
    }
	
	//重写toString方法
    @Override
    public String toString() {
        return id + "\t" + pname + "\t\t" + amount;
    }

    public String getId() {
        return id;
    }

    public void setId(String id) {
        this.id = id;
    }

    public String getPid() {
        return pid;
    }

    public void setPid(String pid) {
        this.pid = pid;
    }

    public int getAmount() {
        return amount;
    }

    public void setAmount(int amount) {
        this.amount = amount;
    }

    public String getPname() {
        return pname;
    }

    public void setPname(String pname) {
        this.pname = pname;
    }

    public String getType() {
        return type;
    }

    public void setType(String type) {
        this.type = type;
    }

	//重写序列化方法
    @Override
    public void write(DataOutput out) throws IOException {
        out.writeUTF(id);
        out.writeUTF(pid);
        out.writeInt(amount);
        out.writeUTF(pname);
        out.writeUTF(type);
    }

	//反序列化方法
    @Override
    public void readFields(DataInput in) throws IOException {
        id = in.readUTF();
        pid = in.readUTF();
        amount = in.readInt();
        pname = in.readUTF();
        type = in.readUTF();
    }

}

2.✌Map类

import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.lib.input.FileSplit;

import java.io.IOException;

public class Map extends Mapper<LongWritable, Text, Text, Bean> {

    String fileName;
	
	//获得文件的名称,因为在同一目录,方便再map阶段对不同表做不同操作
    @Override
    protected void setup(Context context) throws IOException, InterruptedException {

        FileSplit split = (FileSplit) context.getInputSplit();

        fileName = split.getPath().getName();

    }

	//map阶段,将文章内容封装为Bean对象
    @Override
    protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {

        String line = value.toString();

        if (fileName.startsWith("record")) {

            String[] words = line.split("\t");

            context.write(new Text(words[1]), new Bean(words[0], words[1], Integer.parseInt(words[2]), "", "record"));

        } else {

            String[] words = line.split("\t");

            context.write(new Text(words[0]), new Bean("", words[0], 0, words[1], "city"));

        }

    }
}

3.✌Reduce类

import org.apache.commons.beanutils.BeanUtils;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;

import java.io.IOException;
import java.lang.reflect.InvocationTargetException;
import java.util.ArrayList;

public class Reduce extends Reducer<Text, Bean, Bean, NullWritable> {

    @Override
    protected void reduce(Text key, Iterable<Bean> values, Context context) throws IOException, InterruptedException {

		//存取多个Bean对象
        ArrayList<Bean> list = new ArrayList<>();

        Bean pd = new Bean();
		
		//对不同表做不同操作,设置pname
        for (Bean value : values) {

            if ("record".equals(value.getType())) {

                Bean temp = new Bean();

                try {
                    BeanUtils.copyProperties(temp, value);
                } catch (IllegalAccessException e) {
                    e.printStackTrace();
                } catch (InvocationTargetException e) {
                    e.printStackTrace();
                }

                list.add(temp);

            } else {
                try {
                    BeanUtils.copyProperties(pd, value);
                } catch (IllegalAccessException e) {
                    e.printStackTrace();
                } catch (InvocationTargetException e) {
                    e.printStackTrace();
                }
            }
        }

        for (Bean bean : list) {
            bean.setPname(pd.getPname());
            context.write(bean, NullWritable.get());
        }
    }

}

4.✌Driver类

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.log4j.BasicConfigurator;

import java.io.IOException;

public class Driver {

    public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {

		//设置本地输入输出路径
        args = new String[]{"D:/input", "D:/output"};
		
        BasicConfigurator.configure();
		
		//配置信息
        Configuration conf = new Configuration();

		//获取job对象
        Job job = Job.getInstance(conf);
		
		//关联相关类
        job.setJarByClass(Driver.class);
        job.setMapperClass(Map.class);
        job.setReducerClass(Reduce.class);

		//设置map输出类型
        job.setMapOutputKeyClass(Text.class);
        job.setMapOutputValueClass(Bean.class);

		//设置最终输出类型
        job.setOutputKeyClass(Bean.class);
        job.setOutputValueClass(NullWritable.class);

		//设置文件路径
        FileInputFormat.setInputPaths(job, new Path(args[0]));
        FileOutputFormat.setOutputPath(job, new Path(args[1]));
		
		//提交任务
        boolean result = job.waitForCompletion(true);
        System.exit(result ? 0 : 1);
    }
}

posted @ 2021-04-24 19:39  魏宝航  阅读(165)  评论(0编辑  收藏  举报