Lettuce在Spring boot中的使用方式
Lettuce是一个可伸缩线程安全的Redis客户端。多个线程可以共享同一个RedisConnection.本文是基于Lettuce5,主要介绍的知识点如下:
- Lettuce在Spring Boot中的配置
- Lettuce的同步,异步,响应式使用方式
- 事件的订阅
- 发布自定义事件
- 读写分离
- 读写分离策略实现源码
- 客户端分片实现
@Configuration public class LettuceConfig { /** * 配置客户端资源 * @return */ @Bean(destroyMethod = "shutdown") ClientResources clientResources() { return DefaultClientResources.builder().ioThreadPoolSize(8).computationThreadPoolSize(10).build(); } /** * 配置Socket选项 * keepAlive=true * tcpNoDelay=true * connectionTimeout=5秒 * @return */ @Bean SocketOptions socketOptions(){ return SocketOptions.builder().keepAlive(true).tcpNoDelay(true).connectTimeout(Duration.ofSeconds(5)).build(); } /** * 配置客户端选项 * @return */ @Bean ClientOptions clientOptions(SocketOptions socketOptions) { return ClientOptions.builder().socketOptions(socketOptions).build(); } /** * 创建RedisClient * @param clientResources 客户端资源 * @param clientOptions 客户端选项 * @return */ @Bean(destroyMethod = "shutdown") RedisClient redisClient(ClientResources clientResources, ClientOptions clientOptions) { RedisURI uri = RedisURI.builder().withSentinel("xx.xx.xx.xx", 26009).withPassword("abcd1234").withSentinelMasterId("xxx").build(); RedisClient client = RedisClient.create(clientResources, uri); client.setOptions(clientOptions); return client; } /** * 创建连接 * @param redisClient * @return */ @Bean(destroyMethod = "close") StatefulRedisConnection<String, String> connection(RedisClient redisClient) { return redisClient.connect(); } }
基本使用
public Mono<ServerResponse> hello(ServerRequest request) throws Exception { //响应式使用 Mono<String> resp = redisConnection.reactive().get("gxt_new"); //同步使用 redisConnection.sync().get("test"); redisConnection.async().get("test").get(5, TimeUnit.SECONDS); return ServerResponse.ok().body(resp, String.class); }
客户端订阅事件
客户端使用事件总线传输运行期间产生的事件;EventBus可以从客户端资源进行配置和获取,并用于客户端和自定义事件。
如下事件可以被客户端发送:
- 连接事件
- 测量事件
- 集群拓扑事件
client.getResources().eventBus().get().subscribe(e -> { System.out.println("client 订阅事件: " + e); });
client 订阅事件: ConnectionActivatedEvent [/xx:49910 -> /xx:6008] client 订阅事件: ConnectionActivatedEvent [/xx:49911 -> /xx:6018] client 订阅事件: ConnectedEvent [/xx:49912 -> /xx:6018]
发布事件
发布使用也是通过使用eventBus进行发布事件,Event接口只是一个标签接口
eventBus.publish(new Event() { @Override public String toString() { return "自定义事件"; } });
订阅者就可以订阅到这个自定义事件了
client 订阅事件: 自定义事件
读写分离
@Bean(destroyMethod = "close") StatefulRedisMasterSlaveConnection<String, String> statefulRedisMasterSlaveConnection(RedisClient redisClient, RedisURI redisURI) { StatefulRedisMasterSlaveConnection connection = MasterSlave.connect(redisClient, new Utf8StringCodec(), redisURI); connection.setReadFrom(ReadFrom.NEAREST); return connection; } }
StatefulRedisMasterSlaveConnection 支持读写分离,通过设置ReadFrom控制读是从哪个节点读取.
参数 | 含义 |
MASTER | 从master节点读取 |
SLAVE | 从slave节点读取 |
MASTER_PREFERRED |
从master节点读取,如果master节点不可以则从slave节点读取 |
SLAVE_PREFERRED |
从slave节点读取,如果slave节点不可用则倒退到master节点读取 |
NEAREST |
从最近到节点读取 |
具体是如何实现到呢? 下面看一下MasterSlaveConnectionProvider相关源码
//根据意图获取连接 public StatefulRedisConnection<K, V> getConnection(Intent intent) { if (debugEnabled) { logger.debug("getConnection(" + intent + ")"); } //如果readFrom不为null且是READ if (readFrom != null && intent == Intent.READ) { //根据readFrom配置从已知节点中选择可用节点描述 List<RedisNodeDescription> selection = readFrom.select(new ReadFrom.Nodes() { @Override public List<RedisNodeDescription> getNodes() { return knownNodes; } @Override public Iterator<RedisNodeDescription> iterator() { return knownNodes.iterator(); } }); //如果可选择节点集合为空则抛出异常 if (selection.isEmpty()) { throw new RedisException(String.format("Cannot determine a node to read (Known nodes: %s) with setting %s", knownNodes, readFrom)); } try { //遍历所有可用节点 for (RedisNodeDescription redisNodeDescription : selection) { //获取节点连接 StatefulRedisConnection<K, V> readerCandidate = getConnection(redisNodeDescription); //如果节点连接不是打开到连接则继续查找下一个连接 if (!readerCandidate.isOpen()) { continue; } //返回可用连接 return readerCandidate; } //如果没有找到可用连接,默认返回第一个 return getConnection(selection.get(0)); } catch (RuntimeException e) { throw new RedisException(e); } } //如果没有配置readFrom或者不是READ 则返回master连接 return getConnection(getMaster()); }
我们可以看到选择连接到逻辑是通用的,不同的处理就是在selection的处理上,下面看一下不同readFrom策略对于selection的处理
ReadFromSlavePerferred和ReadFromMasterPerferred都是有优先级到概念,看看相关逻辑的处理
static final class ReadFromSlavePreferred extends ReadFrom { @Override public List<RedisNodeDescription> select(Nodes nodes) { List<RedisNodeDescription> result = new ArrayList<>(nodes.getNodes().size()); //优先添加slave节点 for (RedisNodeDescription node : nodes) { if (node.getRole() == RedisInstance.Role.SLAVE) { result.add(node); } } //最后添加master节点 for (RedisNodeDescription node : nodes) { if (node.getRole() == RedisInstance.Role.MASTER) { result.add(node); } } return result; }
static final class ReadFromMasterPreferred extends ReadFrom { @Override public List<RedisNodeDescription> select(Nodes nodes) { List<RedisNodeDescription> result = new ArrayList<>(nodes.getNodes().size()); //优先添加master节点 for (RedisNodeDescription node : nodes) { if (node.getRole() == RedisInstance.Role.MASTER) { result.add(node); } } //其次在添加slave节点 for (RedisNodeDescription node : nodes) { if (node.getRole() == RedisInstance.Role.SLAVE) { result.add(node); } } return result; } }
对于ReadFromMaster和ReadFromSlave都是获取指定角色的节点
static final class ReadFromSlave extends ReadFrom { @Override public List<RedisNodeDescription> select(Nodes nodes) { List<RedisNodeDescription> result = new ArrayList<>(nodes.getNodes().size()); //只获取slave节点 for (RedisNodeDescription node : nodes) { if (node.getRole() == RedisInstance.Role.SLAVE) { result.add(node); } } return result; } }
static final class ReadFromMaster extends ReadFrom { @Override public List<RedisNodeDescription> select(Nodes nodes) { for (RedisNodeDescription node : nodes) { if (node.getRole() == RedisInstance.Role.MASTER) { return LettuceLists.newList(node); } } return Collections.emptyList(); } }
获取最近的节点这个就有点特殊了,它对已知对节点没有做处理,直接返回了它们的节点描述,也就是谁在前面就优先使用谁
static final class ReadFromNearest extends ReadFrom { @Override public List<RedisNodeDescription> select(Nodes nodes) { return nodes.getNodes(); } }
在SentinelTopologyProvider中可以发现,获取nodes节点总是优先获取Master节点,其次是slave节点,这样Nearest效果就等效与MasterPreferred
public List<RedisNodeDescription> getNodes() { logger.debug("lookup topology for masterId {}", masterId); try (StatefulRedisSentinelConnection<String, String> connection = redisClient.connectSentinel(CODEC, sentinelUri)) { RedisFuture<Map<String, String>> masterFuture = connection.async().master(masterId); RedisFuture<List<Map<String, String>>> slavesFuture = connection.async().slaves(masterId); List<RedisNodeDescription> result = new ArrayList<>(); try { Map<String, String> master = masterFuture.get(timeout.toNanos(), TimeUnit.NANOSECONDS); List<Map<String, String>> slaves = slavesFuture.get(timeout.toNanos(), TimeUnit.NANOSECONDS); //添加master节点 result.add(toNode(master, RedisInstance.Role.MASTER)); //添加所有slave节点 result.addAll(slaves.stream().filter(SentinelTopologyProvider::isAvailable) .map(map -> toNode(map, RedisInstance.Role.SLAVE)).collect(Collectors.toList())); } catch (ExecutionException | InterruptedException | TimeoutException e) { throw new RedisException(e); } return result; } }
自定义负载均衡
通过上文可以发现只需要实现 ReadFrom接口,就可以通过该接口实现Master,Slave负载均衡;下面的示例是通过将nodes节点进行打乱,进而实现
@Bean(destroyMethod = "close") StatefulRedisMasterSlaveConnection<String, String> statefulRedisMasterSlaveConnection(RedisClient redisClient, RedisURI redisURI) { StatefulRedisMasterSlaveConnection connection = MasterSlave.connect(redisClient, new Utf8StringCodec(), redisURI); connection.setReadFrom(new ReadFrom() { @Override public List<RedisNodeDescription> select(Nodes nodes) { List<RedisNodeDescription> list = nodes.getNodes(); Collections.shuffle(list); return list; } }); return connection; }
在大规模使用的时候会使用多组主备服务,可以通过客户端分片的方式将部分请求路由到指定的服务器上,但是Lettuce没有提供这样的支持,下面是自定义的实现:
public class Sharded< C extends StatefulRedisConnection,V> { private TreeMap<Long, String> nodes; private final Hashing algo = Hashing.MURMUR_HASH; private final Map<String, StatefulRedisConnection> resources = new LinkedHashMap<>(); private RedisClient redisClient; private String password; private Set<HostAndPort> sentinels; private RedisCodec<String, V> codec; public Sharded(List<String> masters, RedisClient redisClient, String password, Set<HostAndPort> sentinels, RedisCodec<String, V> codec) { this.redisClient = redisClient; this.password = password; this.sentinels = sentinels; this.codec = codec; initialize(masters); } private void initialize(List<String> masters) { nodes = new TreeMap<>(); for (int i = 0; i != masters.size(); ++i) { final String master = masters.get(i); for (int n = 0; n < 160; n++) { nodes.put(this.algo.hash("SHARD-" + i + "-NODE-" + n), master); } RedisURI.Builder builder = RedisURI.builder(); for (HostAndPort hostAndPort : sentinels) { builder.withSentinel(hostAndPort.getHostText(), hostAndPort.getPort()); } RedisURI redisURI = builder.withPassword(password).withSentinelMasterId(master).build(); resources.put(master, MasterSlave.connect(redisClient, codec, redisURI)); } } public StatefulRedisConnection getConnectionBy(String key) { return resources.get(getShardInfo(SafeEncoder.encode(key))); } public Collection<StatefulRedisConnection> getAllConnection(){ return Collections.unmodifiableCollection(resources.values()); } public String getShardInfo(byte[] key) { SortedMap<Long, String> tail = nodes.tailMap(algo.hash(key)); if (tail.isEmpty()) { return nodes.get(nodes.firstKey()); } return tail.get(tail.firstKey()); } public void close(){ for(StatefulRedisConnection connection: getAllConnection()){ connection.close(); } } private static class SafeEncoder { static byte[] encode(final String str) { try { if (str == null) { throw new IllegalArgumentException("value sent to redis cannot be null"); } return str.getBytes("UTF-8"); } catch (UnsupportedEncodingException e) { throw new RuntimeException(e); } } } private interface Hashing { Hashing MURMUR_HASH = new MurmurHash(); long hash(String key); long hash(byte[] key); } private static class MurmurHash implements Hashing { static long hash64A(byte[] data, int seed) { return hash64A(ByteBuffer.wrap(data), seed); } static long hash64A(ByteBuffer buf, int seed) { ByteOrder byteOrder = buf.order(); buf.order(ByteOrder.LITTLE_ENDIAN); long m = 0xc6a4a7935bd1e995L; int r = 47; long h = seed ^ (buf.remaining() * m); long k; while (buf.remaining() >= 8) { k = buf.getLong(); k *= m; k ^= k >>> r; k *= m; h ^= k; h *= m; } if (buf.remaining() > 0) { ByteBuffer finish = ByteBuffer.allocate(8).order(ByteOrder.LITTLE_ENDIAN); // for big-endian version, do this first: // finish.position(8-buf.remaining()); finish.put(buf).rewind(); h ^= finish.getLong(); h *= m; } h ^= h >>> r; h *= m; h ^= h >>> r; buf.order(byteOrder); return h; } public long hash(byte[] key) { return hash64A(key, 0x1234ABCD); } public long hash(String key) { return hash(SafeEncoder.encode(key)); } } }
@Bean(destroyMethod = "close") Sharded<StatefulRedisMasterSlaveConnection,String> sharded(RedisClient redisClient) { Set<HostAndPort> hostAndPorts=new HashSet<>(); hostAndPorts.add(HostAndPort.parse("1xx:26009")); hostAndPorts.add(HostAndPort.parse("1xx:26009")); return new Sharded<>(Arrays.asList("te009","test68","test67"),redisClient,"password",hostAndPorts, new Utf8StringCodec()); }
使用方式
//只从slave节点中读取 StatefulRedisMasterSlaveConnection redisConnection = (StatefulRedisMasterSlaveConnection) sharded.getConnectionBy("key"); //使用异步模式获取缓存值 System.out.println(redisConnection.sync().get("key"));