Lettuce在Spring boot中的使用方式

Lettuce是一个可伸缩线程安全的Redis客户端。多个线程可以共享同一个RedisConnection.本文是基于Lettuce5,主要介绍的知识点如下:

  1. Lettuce在Spring Boot中的配置
  2. Lettuce的同步,异步,响应式使用方式
  3. 事件的订阅
  4. 发布自定义事件
  5. 读写分离
  6. 读写分离策略实现源码
  7. 客户端分片实现
@Configuration
public class LettuceConfig {

    /**
     * 配置客户端资源
     * @return
     */
    @Bean(destroyMethod = "shutdown")
    ClientResources clientResources() {
        return DefaultClientResources.builder().ioThreadPoolSize(8).computationThreadPoolSize(10).build();
    }


    /**
     * 配置Socket选项
     * keepAlive=true
     * tcpNoDelay=true
     * connectionTimeout=5秒
     * @return
     */
    @Bean
    SocketOptions socketOptions(){
       return SocketOptions.builder().keepAlive(true).tcpNoDelay(true).connectTimeout(Duration.ofSeconds(5)).build(); 
    }
    /**
     * 配置客户端选项
     * @return
     */
    @Bean
    ClientOptions clientOptions(SocketOptions socketOptions) {
        return ClientOptions.builder().socketOptions(socketOptions).build();
    }

    /**
     * 创建RedisClient
     * @param clientResources 客户端资源
     * @param clientOptions 客户端选项
     * @return 
     */
    @Bean(destroyMethod = "shutdown")
    RedisClient redisClient(ClientResources clientResources, ClientOptions clientOptions) {
        RedisURI uri = RedisURI.builder().withSentinel("xx.xx.xx.xx", 26009).withPassword("abcd1234").withSentinelMasterId("xxx").build();
        RedisClient client = RedisClient.create(clientResources, uri);
        client.setOptions(clientOptions);
        return client;
    }

    /**
     * 创建连接
     * @param redisClient
     * @return
     */
    @Bean(destroyMethod = "close")
    StatefulRedisConnection<String, String> connection(RedisClient redisClient) {
        return redisClient.connect();
    }
}

  

 基本使用

public Mono<ServerResponse> hello(ServerRequest request) throws  Exception {
    //响应式使用
    Mono<String> resp = redisConnection.reactive().get("gxt_new");
    //同步使用
    redisConnection.sync().get("test");
    redisConnection.async().get("test").get(5, TimeUnit.SECONDS);
    return ServerResponse.ok().body(resp, String.class);
}

 

 客户端订阅事件

     客户端使用事件总线传输运行期间产生的事件;EventBus可以从客户端资源进行配置和获取,并用于客户端和自定义事件。  

 

如下事件可以被客户端发送:

  • 连接事件
  • 测量事件
  • 集群拓扑事件

  

client.getResources().eventBus().get().subscribe(e -> {
            System.out.println("client 订阅事件: " + e);
        });

  

client 订阅事件: ConnectionActivatedEvent [/xx:49910 -> /xx:6008]
client 订阅事件: ConnectionActivatedEvent [/xx:49911 -> /xx:6018]
client 订阅事件: ConnectedEvent [/xx:49912 -> /xx:6018]

 发布事件

    发布使用也是通过使用eventBus进行发布事件,Event接口只是一个标签接口

 eventBus.publish(new Event() {
            @Override
            public String toString() {
                return "自定义事件";
            }
        });

   订阅者就可以订阅到这个自定义事件了  

client 订阅事件: 自定义事件

 读写分离 

 

@Bean(destroyMethod = "close")
    StatefulRedisMasterSlaveConnection<String, String> statefulRedisMasterSlaveConnection(RedisClient redisClient, RedisURI redisURI) {
        StatefulRedisMasterSlaveConnection connection = MasterSlave.connect(redisClient, new Utf8StringCodec(), redisURI);
        connection.setReadFrom(ReadFrom.NEAREST);
        return connection;
    }
}

  StatefulRedisMasterSlaveConnection 支持读写分离,通过设置ReadFrom控制读是从哪个节点读取.

参数 含义
MASTER 从master节点读取
SLAVE 从slave节点读取
MASTER_PREFERRED
从master节点读取,如果master节点不可以则从slave节点读取
SLAVE_PREFERRED
从slave节点读取,如果slave节点不可用则倒退到master节点读取
NEAREST
从最近到节点读取

具体是如何实现到呢? 下面看一下MasterSlaveConnectionProvider相关源码

 //根据意图获取连接
    public StatefulRedisConnection<K, V> getConnection(Intent intent) {

        if (debugEnabled) {
            logger.debug("getConnection(" + intent + ")");
        }
        //如果readFrom不为null且是READ
        if (readFrom != null && intent == Intent.READ) {
            //根据readFrom配置从已知节点中选择可用节点描述
            List<RedisNodeDescription> selection = readFrom.select(new ReadFrom.Nodes() {
                @Override
                public List<RedisNodeDescription> getNodes() {
                    return knownNodes;
                }

                @Override
                public Iterator<RedisNodeDescription> iterator() {
                    return knownNodes.iterator();
                }
            });
            //如果可选择节点集合为空则抛出异常
            if (selection.isEmpty()) {
                throw new RedisException(String.format("Cannot determine a node to read (Known nodes: %s) with setting %s",
                        knownNodes, readFrom));
            }
            try {
                //遍历所有可用节点
                for (RedisNodeDescription redisNodeDescription : selection) {
                    //获取节点连接
                    StatefulRedisConnection<K, V> readerCandidate = getConnection(redisNodeDescription);
                    //如果节点连接不是打开到连接则继续查找下一个连接
                    if (!readerCandidate.isOpen()) {
                        continue;
                    }
                    //返回可用连接
                    return readerCandidate;
                }
                //如果没有找到可用连接,默认返回第一个
                return getConnection(selection.get(0));
            } catch (RuntimeException e) {
                throw new RedisException(e);
            }
        }
        //如果没有配置readFrom或者不是READ 则返回master连接
        return getConnection(getMaster());
    }

 我们可以看到选择连接到逻辑是通用的,不同的处理就是在selection的处理上,下面看一下不同readFrom策略对于selection的处理

ReadFromSlavePerferred和ReadFromMasterPerferred都是有优先级到概念,看看相关逻辑的处理

static final class ReadFromSlavePreferred extends ReadFrom {

        @Override
        public List<RedisNodeDescription> select(Nodes nodes) {

            List<RedisNodeDescription> result = new ArrayList<>(nodes.getNodes().size());
            //优先添加slave节点
            for (RedisNodeDescription node : nodes) {
                if (node.getRole() == RedisInstance.Role.SLAVE) {
                    result.add(node);
                }
            }
            //最后添加master节点
            for (RedisNodeDescription node : nodes) {
                if (node.getRole() == RedisInstance.Role.MASTER) {
                    result.add(node);
                }
            }

            return result;
        }

  

 static final class ReadFromMasterPreferred extends ReadFrom {

        @Override
        public List<RedisNodeDescription> select(Nodes nodes) {

            List<RedisNodeDescription> result = new ArrayList<>(nodes.getNodes().size());
            //优先添加master节点
            for (RedisNodeDescription node : nodes) {
                if (node.getRole() == RedisInstance.Role.MASTER) {
                    result.add(node);
                }
            }
            //其次在添加slave节点
            for (RedisNodeDescription node : nodes) {
                if (node.getRole() == RedisInstance.Role.SLAVE) {
                    result.add(node);
                }
            }

            return result;
        }
    }

对于ReadFromMaster和ReadFromSlave都是获取指定角色的节点  

 static final class ReadFromSlave extends ReadFrom {

        @Override
        public List<RedisNodeDescription> select(Nodes nodes) {

            List<RedisNodeDescription> result = new ArrayList<>(nodes.getNodes().size());
            //只获取slave节点
            for (RedisNodeDescription node : nodes) {
                if (node.getRole() == RedisInstance.Role.SLAVE) {
                    result.add(node);
                }
            }

            return result;
        }
    }

  

static final class ReadFromMaster extends ReadFrom {

        @Override
        public List<RedisNodeDescription> select(Nodes nodes) {

            for (RedisNodeDescription node : nodes) {
                if (node.getRole() == RedisInstance.Role.MASTER) {
                    return LettuceLists.newList(node);
                }
            }

            return Collections.emptyList();
        }
    }

  获取最近的节点这个就有点特殊了,它对已知对节点没有做处理,直接返回了它们的节点描述,也就是谁在前面就优先使用谁

static final class ReadFromNearest extends ReadFrom {

        @Override
        public List<RedisNodeDescription> select(Nodes nodes) {
            return nodes.getNodes();
        }
    }

  在SentinelTopologyProvider中可以发现,获取nodes节点总是优先获取Master节点,其次是slave节点,这样Nearest效果就等效与MasterPreferred

public List<RedisNodeDescription> getNodes() {

        logger.debug("lookup topology for masterId {}", masterId);

        try (StatefulRedisSentinelConnection<String, String> connection = redisClient.connectSentinel(CODEC, sentinelUri)) {

            RedisFuture<Map<String, String>> masterFuture = connection.async().master(masterId);
            RedisFuture<List<Map<String, String>>> slavesFuture = connection.async().slaves(masterId);

            List<RedisNodeDescription> result = new ArrayList<>();
            try {
                Map<String, String> master = masterFuture.get(timeout.toNanos(), TimeUnit.NANOSECONDS);
                List<Map<String, String>> slaves = slavesFuture.get(timeout.toNanos(), TimeUnit.NANOSECONDS);
                //添加master节点    
                result.add(toNode(master, RedisInstance.Role.MASTER));
                //添加所有slave节点
                result.addAll(slaves.stream().filter(SentinelTopologyProvider::isAvailable)
                        .map(map -> toNode(map, RedisInstance.Role.SLAVE)).collect(Collectors.toList()));

            } catch (ExecutionException | InterruptedException | TimeoutException e) {
                throw new RedisException(e);
            }

            return result;
        }
    }

   自定义负载均衡  

       通过上文可以发现只需要实现 ReadFrom接口,就可以通过该接口实现Master,Slave负载均衡;下面的示例是通过将nodes节点进行打乱,进而实现

 @Bean(destroyMethod = "close")
    StatefulRedisMasterSlaveConnection<String, String> statefulRedisMasterSlaveConnection(RedisClient redisClient, RedisURI redisURI) {
        StatefulRedisMasterSlaveConnection connection = MasterSlave.connect(redisClient, new Utf8StringCodec(), redisURI);
        connection.setReadFrom(new ReadFrom() {
            @Override
            public List<RedisNodeDescription> select(Nodes nodes) {
                List<RedisNodeDescription> list = nodes.getNodes();
                Collections.shuffle(list);
                return list;
            }
        });
        return connection;
    }

  

   在大规模使用的时候会使用多组主备服务,可以通过客户端分片的方式将部分请求路由到指定的服务器上,但是Lettuce没有提供这样的支持,下面是自定义的实现:

public class Sharded< C extends StatefulRedisConnection,V> {

    private TreeMap<Long, String> nodes;
    private final Hashing algo = Hashing.MURMUR_HASH;
    private final Map<String, StatefulRedisConnection> resources = new LinkedHashMap<>();
    private RedisClient redisClient;
    private String password;
    private Set<HostAndPort> sentinels;
    private RedisCodec<String, V> codec;

    public Sharded(List<String> masters, RedisClient redisClient, String password, Set<HostAndPort> sentinels, RedisCodec<String, V> codec) {
        this.redisClient = redisClient;
        this.password = password;
        this.sentinels = sentinels;
        this.codec = codec;
        initialize(masters);
    }

    private void initialize(List<String> masters) {
        nodes = new TreeMap<>();

        for (int i = 0; i != masters.size(); ++i) {
            final String master = masters.get(i);
            for (int n = 0; n < 160; n++) {
                nodes.put(this.algo.hash("SHARD-" + i + "-NODE-" + n), master);
            }
            RedisURI.Builder builder = RedisURI.builder();
            for (HostAndPort hostAndPort : sentinels) {
                builder.withSentinel(hostAndPort.getHostText(), hostAndPort.getPort());
            }

            RedisURI redisURI = builder.withPassword(password).withSentinelMasterId(master).build();
            resources.put(master, MasterSlave.connect(redisClient, codec, redisURI));
        }

    }

    public StatefulRedisConnection getConnectionBy(String key) {
        return resources.get(getShardInfo(SafeEncoder.encode(key)));
    }

    public Collection<StatefulRedisConnection> getAllConnection(){
        return Collections.unmodifiableCollection(resources.values());
    }

    public String getShardInfo(byte[] key) {
        SortedMap<Long, String> tail = nodes.tailMap(algo.hash(key));
        if (tail.isEmpty()) {
            return nodes.get(nodes.firstKey());
        }
        return tail.get(tail.firstKey());
    }


    public void close(){
       for(StatefulRedisConnection connection:  getAllConnection()){
            connection.close();
        }
    }

    private static  class SafeEncoder {

         static byte[] encode(final String str) {
            try {
                if (str == null) {
                    throw new IllegalArgumentException("value sent to redis cannot be null");
                }
                return str.getBytes("UTF-8");
            } catch (UnsupportedEncodingException e) {
                throw new RuntimeException(e);
            }
        }
    }
    private interface Hashing {
        Hashing MURMUR_HASH = new MurmurHash();

        long hash(String key);

        long hash(byte[] key);
    }


    private static  class MurmurHash implements Hashing {

         static long hash64A(byte[] data, int seed) {
            return hash64A(ByteBuffer.wrap(data), seed);
        }


         static long hash64A(ByteBuffer buf, int seed) {
            ByteOrder byteOrder = buf.order();
            buf.order(ByteOrder.LITTLE_ENDIAN);

            long m = 0xc6a4a7935bd1e995L;
            int r = 47;

            long h = seed ^ (buf.remaining() * m);

            long k;
            while (buf.remaining() >= 8) {
                k = buf.getLong();

                k *= m;
                k ^= k >>> r;
                k *= m;

                h ^= k;
                h *= m;
            }

            if (buf.remaining() > 0) {
                ByteBuffer finish = ByteBuffer.allocate(8).order(ByteOrder.LITTLE_ENDIAN);
                // for big-endian version, do this first:
                // finish.position(8-buf.remaining());
                finish.put(buf).rewind();
                h ^= finish.getLong();
                h *= m;
            }

            h ^= h >>> r;
            h *= m;
            h ^= h >>> r;

            buf.order(byteOrder);
            return h;
        }

        public long hash(byte[] key) {
            return hash64A(key, 0x1234ABCD);
        }

        public long hash(String key) {
            return hash(SafeEncoder.encode(key));
        }
    }




}

  

 @Bean(destroyMethod = "close")
    Sharded<StatefulRedisMasterSlaveConnection,String> sharded(RedisClient redisClient) {

        Set<HostAndPort> hostAndPorts=new HashSet<>();
        hostAndPorts.add(HostAndPort.parse("1xx:26009"));
        hostAndPorts.add(HostAndPort.parse("1xx:26009"));


        return new Sharded<>(Arrays.asList("te009","test68","test67"),redisClient,"password",hostAndPorts, new Utf8StringCodec());
    }

  使用方式

  //只从slave节点中读取
            StatefulRedisMasterSlaveConnection redisConnection = (StatefulRedisMasterSlaveConnection) sharded.getConnectionBy("key");
            //使用异步模式获取缓存值
            System.out.println(redisConnection.sync().get("key"));

  

 

posted @ 2018-06-06 23:06  开心朵朵  阅读(5758)  评论(0编辑  收藏  举报