hdu1700 Points on Cycle
地址:http://acm.split.hdu.edu.cn/showproblem.php?pid=1700
题目:
Points on Cycle
Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 2523 Accepted Submission(s): 972
Problem Description
There is a cycle with its center on the origin.
Now give you a point on the cycle, you are to find out the other two points on it, to maximize the sum of the distance between each other
you may assume that the radius of the cycle will not exceed 1000.
Now give you a point on the cycle, you are to find out the other two points on it, to maximize the sum of the distance between each other
you may assume that the radius of the cycle will not exceed 1000.
Input
There are T test cases, in each case there are 2 decimal number representing the coordinate of the given point.
Output
For each testcase you are supposed to output the coordinates of both of the unknow points by 3 decimal places of precision
Alway output the lower one first(with a smaller Y-coordinate value), if they have the same Y value output the one with a smaller X.
Alway output the lower one first(with a smaller Y-coordinate value), if they have the same Y value output the one with a smaller X.
NOTE
when output, if the absolute difference between the coordinate values X1 and X2 is smaller than 0.0005, we assume they are equal.
Sample Input
2
1.500 2.000
563.585 1.251
Sample Output
0.982 -2.299 -2.482 0.299
-280.709 -488.704 -282.876 487.453
Source
Recommend
lcy
思路:
直接猜是等边三角形,然后发现确实是。
求其他两个点,直接旋转就行了。
1 #include <iostream> 2 #include <cstdio> 3 #include <cmath> 4 #include <algorithm> 5 6 7 using namespace std; 8 const double PI = acos(-1.0); 9 const double eps = 5e-4; 10 11 /****************常用函数***************/ 12 //判断ta与tb的大小关系 13 int sgn( double ta, double tb) 14 { 15 if(fabs(ta-tb)<eps)return 0; 16 if(ta<tb) return -1; 17 return 1; 18 } 19 20 //点 21 class Point 22 { 23 public: 24 25 double x, y; 26 27 Point(){} 28 Point( double tx, double ty){ x = tx, y = ty;} 29 30 }; 31 //两点间距离 32 double getdis(const Point &st,const Point &se) 33 { 34 return sqrt((st.x - se.x) * (st.x - se.x) + (st.y - se.y) * (st.y - se.y)); 35 } 36 37 int main(void) 38 { 39 //freopen("in.acm","r",stdin); 40 int t; 41 scanf("%d",&t); 42 Point pa,pb,pc,pp=Point(0,0); 43 while(t--) 44 { 45 scanf("%lf%lf",&pa.x,&pa.y); 46 double r = getdis(pa,pp); 47 double ag = atan2(pa.y,pa.x); 48 pb.x = r * cos(ag + PI * 2 / 3), pb.y = r * sin(ag + PI * 2 / 3); 49 pc.x = r * cos(ag - PI * 2 / 3), pc.y = r * sin(ag - PI * 2 / 3); 50 if(sgn(pb.y,pc.y)>0||(sgn(pb.y,pc.y)==0&&sgn(pb.x,pc.x)>0)) 51 swap(pb,pc); 52 printf("%.3f %.3f %.3f %.3f\n",pb.x,pb.y,pc.x,pc.y); 53 } 54 return 0; 55 }
作者:weeping
出处:www.cnblogs.com/weeping/
本文版权归作者和博客园共有,欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出原文连接,否则保留追究法律责任的权利。