Problem Description
A ring is compose of n circles as shown in diagram. Put natural number 1, 2, …, n into each circle separately, and the sum of numbers in two adjacent circles should be a prime.
Note: the number of first circle should always be 1.
Input
n (0 < n < 20).
Output
The output format is shown as sample below. Each row represents a series of circle numbers in the ring beginning from 1 clockwisely and anticlockwisely. The order of numbers must satisfy the above requirements. Print solutions in lexicographical order.
You are to write a program that completes above process.
Print a blank line after each case.
Sample Input
6
8
Sample Output
Case 1:
1 4 3 2 5 6
1 6 5 2 3 4
Case 2:
1 2 3 8 5 6 7 4
1 2 5 8 3 4 7 6
1 4 7 6 5 8 3 2
1 6 7 4 3 8 5 2
import java.util.Scanner;
public class Main {
public static void main(String[] args) {
int Case = 0;
Scanner sc = new Scanner(System.in);
while(sc.hasNext()){
int n = sc.nextInt();
int a[] = new int[n];
//初始数组1-n
int color[] = new int[n];
//判断数字是否已经存在
int prant[] = new int[n];
//输出数据排序
int count =0;//计数器
for(int i=0;i<n;i++){
a[i]=i+1;
color[i] = -1;
}//初始化数据
Case++;
System.out.println("Case "+(Case)+":");
dfs(a,color,prant,count,0);
System.out.println();
}
}
private static void dfs(int[] a, int[] color, int[] prant, int count,int m) {
//System.out.println(count);
count++;//计数器加1
if(count == a.length&&p(prant[0],a[m])){
//注意第一个数和最后一个数相加的和也必须为素数
prant[count-1]=a[m];
for(int i=0;i<a.length-1;i++){
System.out.print(prant[i]+" ");
}
System.out.println(prant[a.length-1]);
//return ;
}
for(int i=0;i<a.length;i++){
color[m] =1;
if(p(a[m],a[i])&&color[i]==-1){
color[i]=1;
prant[count-1]=a[m];
dfs(a,color,prant,count,i);
color[i]=-1;
}
}
}
//判断是不是素数
private static boolean p(int i, int j) {
int sum = i+j;
for(int a=2;a*a<=sum;a++){
if(sum%a==0){
return false;
}
}
return true;
}
}
C语言:
#include <iostream>
#include <stdio.h>
#include <string.h>
using namespace std;
int n;
int df[21];
int t=1;
int m[21];
int mi;
bool pn(int x,int y){//判断素数
for(int i=2;i*i<=x+y;i++){
if((x+y)%i==0){
return false;
}
}
return true;
}
void dfs(int x){
if(mi==n&&pn(m[1],m[n])){
for(int i=1;i<n;i++){
printf("%d ",m[i]);
}
printf("%d\n",m[n]);
return;
}
for(int i=2;i<=n;i++){
if(df[i]==0&&pn(x,i)){
df[x]=1;
mi++;//当前小球数
m[mi]=i;
dfs(i);
df[x]=0;
mi--;//必须减一
}
}
}
int main()
{
while(~scanf("%d",&n)){
printf("Case %d:\n",t);
t++;
memset(df,0,sizeof(df));
mi=1;
m[mi]=1;
dfs(1);
printf("\n");
}
return 0;
}