Fork me on GitHub

transformers的bert预训练模型的返回值简要描述

一般使用transformers做bert finetune时,经常会编写如下类似的代码:

outputs = self.bert(input_ids,
                               attention_mask=attention_mask,
                               token_type_ids=token_type_ids,
                               position_ids=position_ids,
                               head_mask=head_mask)

 在BertModel(BertPreTrainedModel)中,对返回值outputs的解释如下:

r"""
    Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
        **last_hidden_state**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, hidden_size)``
            Sequence of hidden-states at the output of the last layer of the model.
        **pooler_output**: ``torch.FloatTensor`` of shape ``(batch_size, hidden_size)``
            Last layer hidden-state of the first token of the sequence (classification token)
            further processed by a Linear layer and a Tanh activation function. The Linear
            layer weights are trained from the next sentence prediction (classification)
            objective during Bert pretraining. This output is usually *not* a good summary
            of the semantic content of the input, you're often better with averaging or pooling
            the sequence of hidden-states for the whole input sequence.
        **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
            list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
            of shape ``(batch_size, sequence_length, hidden_size)``:
            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
        **attentions**: (`optional`, returned when ``config.output_attentions=True``)
            list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
"""

这里的pooler_output指的是输出序列最后一个隐层,即CLS标签。查看forward函数的源码,最后返回的部分代码如下:

        sequence_output = encoder_outputs[0]
        pooled_output = self.pooler(sequence_output)

        outputs = (sequence_output, pooled_output,) + encoder_outputs[
            1:
        ]  # add hidden_states and attentions if they are here
        return outputs  # sequence_output, pooled_output, (hidden_states), (attentions)

可以看到sequence_output进入了一个pooler层,这个pooler层结构如下:

class BertPooler(nn.Module):
    def __init__(self, config):
        super(BertPooler, self).__init__()
        self.dense = nn.Linear(config.hidden_size, config.hidden_size)
        self.activation = nn.Tanh()

    def forward(self, hidden_states):
        # We "pool" the model by simply taking the hidden state corresponding
        # to the first token.
        first_token_tensor = hidden_states[:, 0]
        pooled_output = self.dense(first_token_tensor)
        pooled_output = self.activation(pooled_output)
        return pooled_output

所以bert的model并不是简单的组合返回。一般说来,如果需要用bert做句子级的任务,可以使用pooled_output结果做baseline;进一步的微调可以使用last_hidden_state的结果。

last_hidden_state的结构如下所示:

第0列为CLS,对应句向量,其他列对应词向量。

 

posted @ 2020-01-08 18:04  webberg  阅读(6690)  评论(5编辑  收藏  举报