K8S_v1.20+二进制安装(一)
1. Kubernetes介绍
1. 应用部署方式演变
在部署应用程序的方式上,主要经历了三个时代:
-
传统部署:互联网早期,会直接将应用程序部署在物理机上
优点:简单,不需要其它技术的参与
缺点:不能为应用程序定义资源使用边界,很难合理地分配计算资源,而且程序之间容易产生影响
-
虚拟化部署:可以在一台物理机上运行多个虚拟机,每个虚拟机都是独立的一个环境
优点:程序环境不会相互产生影响,提供了一定程度的安全性
缺点:增加了操作系统,浪费了部分资源
-
容器化部署:与虚拟化类似,但是共享了操作系统
优点:
可以保证每个容器拥有自己的文件系统、CPU、内存、进程空间等
运行应用程序所需要的资源都被容器包装,并和底层基础架构解耦
容器化的应用程序可以跨云服务商、跨Linux操作系统发行版进行部署
容器化部署方式给带来很多的便利,但是也会出现一些问题,比如说:
- 一个容器故障停机了,怎么样让另外一个容器立刻启动去替补停机的容器
- 当并发访问量变大的时候,怎么样做到横向扩展容器数量
这些容器管理的问题统称为容器编排问题,为了解决这些容器编排问题,就产生了一些容器编排的软件:
- Swarm:Docker自己的容器编排工具
- Mesos:Apache的一个资源统一管控的工具,需要和Marathon结合使用
- Kubernetes:Google开源的的容器编排工具
2. kubernetes简介
kubernetes,是一个全新的基于容器技术的分布式架构领先方案,是谷歌严格保密十几年的秘密武器----Borg系统的一个开源版本,于2014年9月发布第一个版本,2015年7月发布第一个正式版本。
kubernetes的本质是一组服务器集群,它可以在集群的每个节点上运行特定的程序,来对节点中的容器进行管理。目的是实现资源管理的自动化,主要提供了如下的主要功能:
- 自我修复:一旦某一个容器崩溃,能够在1秒中左右迅速启动新的容器
- 弹性伸缩:可以根据需要,自动对集群中正在运行的容器数量进行调整
- 服务发现:服务可以通过自动发现的形式找到它所依赖的服务
- 负载均衡:如果一个服务起动了多个容器,能够自动实现请求的负载均衡
- 版本回退:如果发现新发布的程序版本有问题,可以立即回退到原来的版本
- 存储编排:可以根据容器自身的需求自动创建存储卷
3. kubernetes组件
一个kubernetes集群主要是由控制节点(master)、工作节点(node)构成,每个节点上都会安装不同的组件。
master:集群的控制平面,负责集群的决策 ( 管理 )
ApiServer : 资源操作的唯一入口,接收用户输入的命令,提供认证、授权、API注册和发现等机制
Scheduler : 负责集群资源调度,按照预定的调度策略将Pod调度到相应的node节点上
ControllerManager : 负责维护集群的状态,比如程序部署安排、故障检测、自动扩展、滚动更新等
Etcd :负责存储集群中各种资源对象的信息
node:集群的数据平面,负责为容器提供运行环境 ( 干活 )
Kubelet : 负责维护容器的生命周期,即通过控制docker,来创建、更新、销毁容器
KubeProxy : 负责提供集群内部的服务发现和负载均衡
Docker : 负责节点上容器的各种操作
下面,以部署一个nginx服务来说明kubernetes系统各个组件调用关系:
-
首先要明确,一旦kubernetes环境启动之后,master和node都会将自身的信息存储到etcd数据库中
-
一个nginx服务的安装请求会首先被发送到master节点的apiServer组件
-
apiServer组件会调用scheduler组件来决定到底应该把这个服务安装到哪个node节点上
在此时,它会从etcd中读取各个node节点的信息,然后按照一定的算法进行选择,并将结果告知apiServer
-
apiServer调用controller-manager去调度Node节点安装nginx服务
-
kubelet接收到指令后,会通知docker,然后由docker来启动一个nginx的pod
pod是kubernetes的最小操作单元,容器必须跑在pod中至此,
-
一个nginx服务就运行了,如果需要访问nginx,就需要通过kube-proxy来对pod产生访问的代理
这样,外界用户就可以访问集群中的nginx服务了
4. kubernetes概念
Master:集群控制节点,每个集群需要至少一个master节点负责集群的管控
Node:工作负载节点,由master分配容器到这些node工作节点上,然后node节点上的docker负责容器的运行
Pod:kubernetes的最小控制单元,容器都是运行在pod中的,一个pod中可以有1个或者多个容器
Controller:控制器,通过它来实现对pod的管理,比如启动pod、停止pod、伸缩pod的数量等等
Service:pod对外服务的统一入口,下面可以维护者同一类的多个pod
Label:标签,用于对pod进行分类,同一类pod会拥有相同的标签
NameSpace:命名空间,用来隔离pod的运行环境
2. kubernetes系统初始化
1. 前置
目前生产部署Kubernetes 集群主要有两种方式:
kubeadm
Kubeadm 是一个K8s 部署工具,提供kubeadm init 和kubeadm join,用于快速部署Kubernetes 集群。
官方地址:https://kubernetes.io/docs/reference/setup-tools/kubeadm/kubeadm/
二进制包
从github 下载发行版的二进制包,手动部署每个组件,组成Kubernetes 集群。
Kubeadm 降低部署门槛,但屏蔽了很多细节,遇到问题很难排查。如果想更容易可控,推荐使用二进制包部署Kubernetes 集群,虽然手动部署麻烦点,期间可以学习很多工作原理,也利于后期维护。
2. 安装要求
在开始之前,部署Kubernetes 集群机器需要满足以下几个条件:
- 一台或多台机器,操作系统CentOS7.x-86_x64
- 硬件配置:2GB 或更多RAM,2 个CPU 或更多CPU,硬盘30GB 或更多
- 集群中所有机器之间网络互通
- 可以访问外网,需要拉取镜像
- 禁止swap 分区
3. 准备环境
主机名 | IP地址 | 组件 |
---|---|---|
master01 | 192.168.3.188 | apiserver,scheduler,controller-manager,etcd |
master02 | 192.168.3.189 | apiserver,scheduler,controller-manager,etcd |
node01 | 192.168.3.199 | kubelet,kube-proxy |
node02 | 192.168.3.200 | kubelet,kube-proxy |
k8s_lb | 192.168.3.246 | keeplived虚拟ip |
4. 配置Host解析
所有服务器
cat <<EOF>> /etc/hosts
192.168.3.188 master01
192.168.3.189 master02
192.168.3.199 node01
192.168.3.200 node02
192.168.3.246 k8s-lb
EOF
5. 安装基础文件
curl -o /etc/yum.repos.d/CentOS-Base.repo http://mirrors.aliyun.com/repo/Centos-7.repo
curl -o /etc/yum.repos.d/epel.repo http://mirrors.aliyun.com/repo/epel-7.repo
yum install -y ntpdate curl lrzsz wget bash-completion.noarch bash-completion-extras.noarch dos2unix telnet tree vim
yum install ipvsadm ipset sysstat conntrack libseccomp -y
6 设置防火墙
#可关闭防火墙或者设置端口开放
systemctl disable --now firewalld
#master
firewall-cmd --zone=public --add-port=6443/tcp --permanent
firewall-cmd --zone=public --add-port=2379-2380/tcp --permanent
firewall-cmd --zone=public --add-port=10250/tcp --permanent
firewall-cmd --zone=public --add-port=10259/tcp --permanent
firewall-cmd --zone=public --add-port=10257/tcp --permanent
firewall-cmd --reload
#node
firewall-cmd --zone=public --add-port=10250/tcp --permanent
firewall-cmd --zone=public --add-port=30000-32767/tcp --permanent
firewall-cmd --zone=public --add-port=2379-2380/tcp --permanent
firewall-cmd --reload
#详细请看官方介绍
https://kubernetes.io/docs/reference/ports-and-protocols/
7 关闭 Selinux+swap
swapoff -a && sed -i '/ swap / s/^\(.*\)$/#\1/g' /etc/fstab
setenforce 0 && sed -i 's/^SELINUX=.*/SELINUX=disabled/' /etc/selinux/config
8 调整系统时区
#执行同步,可以使用自己的ntp服务器如果没有
ntpdate time2.aliyun.com
#写入定时任务
crontab -e
*/5 * * * * ntpdate time2.aliyun.com
9 优化linux
ulimit -SHn 65535
vim /etc/security/limits.conf
# 末尾添加如下内容
* soft nofile 655360
* hard nofile 131072
* soft nproc 655350
* hard nproc 655350
* soft memlock unlimited
* hard memlock unlimited
10 升级内核
#升级到4.0以上即可
[root@matster1 ~]# uname -r
3.10.0-1160.el7.x86_64
#要在 CentOS 7.× 上启用 ELRepo 仓库,请运行:
rpm --import https://www.elrepo.org/RPM-GPG-KEY-elrepo.org
rpm -Uvh http://www.elrepo.org/elrepo-release-7.0-2.el7.elrepo.noarch.rpm
#查看相关的包
# yum --disablerepo="*" --enablerepo="elrepo-kernel" list available
#安装最新稳定版
yum --enablerepo=elrepo-kernel install kernel-ml -y
#查看内核的启动顺序
#awk -F\' '$1=="menuentry " {print $2}' /etc/grub2.cfg
#将新安装的内核成为默认启动选项
vi /etc/default/grub
GRUB_DEFAULT=0
#重新加载内核配置
grub2-mkconfig -o /boot/grub2/grub.cfg
reboot
#查看
[root@matster1 ~]# uname -r
5.16.1-1.el7.elrepo.x86_64
11 调整内核参数
#加载ipvs模块
cat > /etc/modules-load.d/ipvs.conf << EFO
ip_vs
ip_vs_lc
ip_vs_wlc
ip_vs_rr
ip_vs_wrr
ip_vs_lblc
ip_vs_lblcr
ip_vs_dh
ip_vs_sh
ip_vs_fo
ip_vs_nq
ip_vs_sed
ip_vs_ftp
ip_vs_sh
nf_conntrack
ip_tables
ip_set
xt_set
ipt_set
ipt_rpfilter
ipt_REJECT
ipip
EFO
systemctl enable --now systemd-modules-load.service
#调整内核参数
cat > /etc/sysctl.d/kubernetes.conf <<EOF
net.bridge.bridge-nf-call-ip6tables = 1
net.bridge.bridge-nf-call-iptables = 1
net.ipv4.ip_forward=1
net.ipv4.tcp_tw_recycle=0
vm.swappiness=0 # 禁止使用 swap 空间,只有当系统 OOM 时才允许使用它
vm.overcommit_memory=1 # 不检查物理内存是否够用
vm.panic_on_oom=0 # 开启 OOM
fs.inotify.max_user_instances=8192
fs.inotify.max_user_watches=1048576
fs.file-max=52706963
fs.nr_open=52706963
net.ipv6.conf.all.disable_ipv6=1
net.netfilter.nf_conntrack_max=2310720
EOF
#重启
reboot
#重启服务器执行检查
lsmod | grep -e ip_vs -e nf_conntrack
3. 准备软件包
#下载kubernetes1.23.+的二进制包
github二进制包下载地址:https://github.com/kubernetes/kubernetes/blob/master/CHANGELOG/CHANGELOG-1.23.md
#下载etcdctl二进制包
github二进制包下载地址:https://github.com/etcd-io/etcd/releases
#下载cfssl二进制包
github二进制包下载地址:https://github.com/cloudflare/cfssl/releases
#cni插件下载
github下载地址:https://github.com/containernetworking/plugins/releases
4. 安装 Docker 软件
node节点
curl -o /etc/yum.repos.d/docker-ce.repo http://mirrors.aliyun.com/docker-ce/linux/centos/docker-ce.repo
#查看所有版本
#yum list docker-ce --showduplicates | sort -r
yum install -y docker-ce
## 创建 /etc/docker 目录
mkdir -p /etc/docker
tee /etc/docker/daemon.json <<-'EOF'
{
"registry-mirrors": ["https://u7vs31xg.mirror.aliyuncs.com"],
"exec-opts": ["native.cgroupdriver=systemd"]
}
EOF
# 重启docker服务
systemctl restart docker && systemctl enable docker
5.生成etcd集群所需证书
1 安装cfssl工具
cfssl是一个开源的证书管理工具,使用json文件生成证书,相比openssl更方便使用
#解压
wget https://pkg.cfssl.org/R1.2/cfssl_linux-amd64
wget https://pkg.cfssl.org/R1.2/cfssljson_linux-amd64
wget https://pkg.cfssl.org/R1.2/cfssl-certinfo_linux-amd64
chmod +x cfssl*
mv cfssl_linux-amd64 /usr/local/bin/cfssl
mv cfssljson_linux-amd64 /usr/local/bin/cfssljson
mv cfssl-certinfo_linux-amd64 /usr/local/bin/cfssl-certinfo
生成证书的ca机构
mkdir -p /data/work
cd /data/work
#生成申请文件
cat > ca-csr.json << EOF
{
"CN": "kubernetes",
"key": {
"algo": "rsa",
"size": 2048
},
"names": [
{
"C": "CN",
"ST": "Qingdao",
"L": "Qingdao",
"O": "k8s",
"OU": "system"
}
],
"ca": {
"expiry": "87600h"
}
}
EOF
#生成ca证书
cfssl gencert -initca ca-csr.json | cfssljson -bare ca
#创建etcd证书的ca
cat > ca-config.json << EOF
{
"signing": {
"default": {
"expiry": "87600h"
},
"profiles": {
"kubernetes": {
"usages": [
"signing",
"key encipherment",
"server auth",
"client auth"
],
"expiry": "87600h"
}
}
}
}
EOF
2 生成etcd证书
生成etcd请求csr文件
#生成etcd证书申请文件
cat > etcd-csr.json << EOF
{
"CN": "etcd",
"hosts": [
"127.0.0.1",
"192.168.3.188",
"192.168.3.189"
],
"key": {
"algo": "rsa",
"size": 2048
},
"names": [{
"C": "CN",
"ST": "Qingdao",
"L": "Qingdao",
"O": "k8s",
"OU": "system"
}]
}
EOF
#生成证书
cfssl gencert -ca=ca.pem -ca-key=ca-key.pem -config=ca-config.json -profile=kubernetes etcd-csr.json | cfssljson -bare etcd
6. 安装Etcd集群
配置安装包
tar xf etcd-v3.5.2-linux-amd64.tar.gz
\cp etcd-v3.5.2-linux-amd64/etcd* /usr/local/bin/
编辑etcd配置文件
cat > etcd.conf << EOF
#[Member]
ETCD_NAME="etcd1"
ETCD_DATA_DIR="/var/lib/etcd/default.etcd"
ETCD_LISTEN_PEER_URLS="https://192.168.3.188:2380"
ETCD_LISTEN_CLIENT_URLS="https://192.168.3.188:2379,http://127.0.0.1:2379"
#[Clustering]
ETCD_INITIAL_ADVERTISE_PEER_URLS="https://192.168.3.188:2380"
ETCD_ADVERTISE_CLIENT_URLS="https://192.168.3.188:2379"
ETCD_INITIAL_CLUSTER="etcd1=https://192.168.3.188:2380,etcd2=https://192.168.3.189:2380"
ETCD_INITIAL_CLUSTER_TOKEN="etcd-cluster"
ETCD_INITIAL_CLUSTER_STATE="new"
EOF
注:
ETCD_NAME:节点名称,集群中唯一
ETCD_DATA_DIR:数据目录
ETCD_LISTEN_PEER_URLS:集群通信监听地址
ETCD_LISTEN_CLIENT_URLS:客户端访问监听地址
ETCD_INITIAL_ADVERTISE_PEER_URLS:集群通告地址
ETCD_ADVERTISE_CLIENT_URLS:客户端通告地址
ETCD_INITIAL_CLUSTER:集群节点地址
ETCD_INITIAL_CLUSTER_TOKEN:集群Token
ETCD_INITIAL_CLUSTER_STATE:加入集群的当前状态,new是新集群,existing表示加入已有集群
创建 etcd的 systemd启动文件
cat >/usr/lib/systemd/system/etcd.service <<EOF
[Unit]
Description=Etcd Server
After=network.target
After=network-online.target
Wants=network-online.target
[Service]
Type=notify
EnvironmentFile=-/etc/etcd/etcd.conf
WorkingDirectory=/var/lib/etcd/
ExecStart=/usr/local/bin/etcd \
--cert-file=/etc/etcd/ssl/etcd.pem \
--key-file=/etc/etcd/ssl/etcd-key.pem \
--trusted-ca-file=/etc/etcd/ssl/ca.pem \
--peer-cert-file=/etc/etcd/ssl/etcd.pem \
--peer-key-file=/etc/etcd/ssl/etcd-key.pem \
--peer-trusted-ca-file=/etc/etcd/ssl/ca.pem \
--peer-client-cert-auth \
--client-cert-auth
Restart=on-failure
RestartSec=5
LimitNOFILE=65536
[Install]
WantedBy=multi-user.target
EOF
移动证书
mkdir -p /etc/etcd/ssl
cp ca*.pem /etc/etcd/ssl/
cp etcd*.pem /etc/etcd/ssl/
cp etcd.conf /etc/etcd/
cp etcd.service /usr/lib/systemd/system/
scp /etc/etcd master02:/etc
scp etcd.service master02:/usr/lib/systemd/system/
#注意master02需要更改ip地址
启动
systemctl daemon-reload
systemctl start etcd
systemctl enable etcd
#启动ETCD集群同时启动二个节点,单节点是无法正常启动的。
检查状态
[root@master01 work]# ETCDCTL_API=3 /usr/local/bin/etcdctl --write-out=table --cacert=/etc/etcd/ssl/ca.pem --cert=/etc/etcd/ssl/etcd.pem --key=/etc/etcd/ssl/etcd-key.pem --endpoints=https://192.168.3.188:2379,https://192.168.3.189:2379 endpoint health
#常用命令
./etcdctl --endpoints=ip,ip,ip endpoint status
./etcdctl --endpoints=ip,ip,ip endpoint health
./etcdctl --endpoints=ip,ip,ip endpoint hashkv
./etcdctl --endpoints=ip,ip,ip check perf
./etcdctl --endpoints=ip,ip,ip check datascale
./etcdctl --endpoints=ip,ip,ip member list
7. 部署apiserver
tar xf kubernetes-server-linux-amd64.tar.gz
cd kubernetes/server/bin/
\cp kube-apiserver kube-controller-manager kube-scheduler kubectl /usr/local/bin/
scp kube-apiserver kube-controller-manager kube-scheduler kubectl master02:/usr/local/bin/
scp kubelet kube-proxy node01:/usr/local/bin/
scp kubelet kube-proxy node02:/usr/local/bin/
#创建工作目录
[root@master1 work]# mkdir -p /etc/kubernetes/ # kubernetes组件配置文件存放目录
[root@master1 work]# mkdir -p /etc/kubernetes/ssl # kubernetes组件证书文件存放目录
[root@master1 work]# mkdir /var/log/kubernetes # kubernetes组件日志文件存放目录
1.创建kube-apiserver证书
#创建目录
#生成证书申请文件
cat > kube-apiserver-csr.json <<EOF
{
"CN": "kubernetes",
"hosts": [
"127.0.0.1",
"192.168.3.188",
"192.168.3.189",
"192.168.3.246",
"10.255.0.1",
"kubernetes",
"kubernetes.default",
"kubernetes.default.svc",
"kubernetes.default.svc.cluster",
"kubernetes.default.svc.cluster.local"
],
"key": {
"algo": "rsa",
"size": 2048
},
"names": [
{
"C": "CN",
"TS": "Qingdao",
"L": "Qingdao",
"O": "k8s",
"OU": "system"
}
]
}
EOF
#生成证书
cfssl gencert -ca=ca.pem -ca-key=ca-key.pem -config=ca-config.json -profile=kubernetes kube-apiserver-csr.json | cfssljson -bare kube-apiserver
#生成token
cat > token.csv << EOF
$(head -c 16 /dev/urandom | od -An -t x | tr -d ' '),kubelet-bootstrap,10001,"system:kubelet-bootstrap"
EOF
上述文件hosts字段中IP为所有Master/LB/VIP IP,一个都不能少!为了方便后期扩容可以多写几个预留的IP。
由于该证书后续被 kubernetes master 集群使用,需要将master节点的IP都填上,同时还需要填写 service 网络的首个IP。(一般是 kube-apiserver 指定的 service-cluster-ip-range 网段的第一个IP,如 10.200.0.1)
2.创建配置文件
vim kube-apiserver.conf
KUBE_APISERVER_OPTS="--enable-admission-plugins=NamespaceLifecycle,NodeRestriction,LimitRanger,ServiceAccount,DefaultStorageClass,ResourceQuota --anonymous-auth=false
--bind-address=192.168.3.188 --secure-port=6443 --advertise-address=192.168.3.188 --insecure-port=0 --authorization-mode=Node,RBAC --runtime-config=api/all=true --enab
le-bootstrap-token-auth --service-cluster-ip-range=10.255.0.0/16 --token-auth-file=/etc/kubernetes/token.csv --service-node-port-range=30000-50000 --tls-cert-file=/etc
/kubernetes/ssl/kube-apiserver.pem --tls-private-key-file=/etc/kubernetes/ssl/kube-apiserver-key.pem --client-ca-file=/etc/kubernetes/ssl/ca.pem --kubelet-client-certi
ficate=/etc/kubernetes/ssl/kube-apiserver.pem --kubelet-client-key=/etc/kubernetes/ssl/kube-apiserver-key.pem --service-account-key-file=/etc/kubernetes/ssl/ca-key.pem
--service-account-signing-key-file=/etc/kubernetes/ssl/ca-key.pem --service-account-issuer=https://kubernetes.default.svc.cluster.local --etcd-cafile=/etc/etcd/ssl/ca
.pem --etcd-certfile=/etc/etcd/ssl/etcd.pem --etcd-keyfile=/etc/etcd/ssl/etcd-key.pem --etcd-servers=https://192.168.3.188:2379,https://192.168.3.189:2379 --enable-swa
gger-ui=true --allow-privileged=true --apiserver-count=3 --audit-log-maxage=30 --audit-log-maxbackup=3 --audit-log-maxsize=100 --audit-log-path=/var/log/kube-apiserver
-audit.log --event-ttl=1h --alsologtostderr=true --logtostderr=false --log-dir=/var/log/kubernetes --v=4"
–logtostderr:启用日志
–v:日志等级
–log-dir:日志目录
–etcd-servers:etcd集群地址
–bind-address:监听地址
–secure-port:https安全端口
–advertise-address:集群通告地址
–allow-privileged:启用授权
–service-cluster-ip-range:Service虚拟IP地址段
–enable-admission-plugins:准入控制模块
–authorization-mode:认证授权,启用RBAC授权和节点自管理
–enable-bootstrap-token-auth:启用TLS bootstrap机制
–token-auth-file:bootstrap token文件
–service-node-port-range:Service nodeport类型默认分配端口范围
–kubelet-client-xxx:apiserver访问kubelet客户端证书
–tls-xxx-file:apiserver https证书
–etcd-xxxfile:连接Etcd集群证书
–audit-log-xxx:审计日志
3.创建启动文件
cat > /usr/lib/systemd/system/kube-apiserver.service <<EOF
[Unit]
Description=Kubernetes API Server
Documentation=https://github.com/kubernetes/kubernetes
After=etcd.service
Wants=etcd.service
[Service]
EnvironmentFile=-/etc/kubernetes/kube-apiserver.conf
ExecStart=/usr/local/bin/kube-apiserver $KUBE_APISERVER_OPTS
Restart=on-failure
RestartSec=5
Type=notify
LimitNOFILE=65536
[Install]
WantedBy=multi-user.target
EOF
4. 同步文件到其他节点
[root@master1 work]# \cp ca*.pem /etc/kubernetes/ssl/
[root@master1 work]# \cp kube-apiserver*.pem /etc/kubernetes/ssl/
[root@master1 work]# \cp token.csv /etc/kubernetes/
[root@master1 work]# \cp kube-apiserver.conf /etc/kubernetes/
[root@master1 work]# \cp kube-apiserver.service /usr/lib/systemd/system/
scp -rp kube-apiserver.service master02:/usr/lib/systemd/system/
scp -rp /etc/kubernetes/ master02:/etc
注:master2和master3配置文件的IP地址修改为实际的本机IP
解释:启用 TLS Bootstrapping 机制
TLS Bootstraping:Master apiserver启用TLS认证后,Node节点kubelet和kube-proxy要与kube-apiserver进行通信,必须使用CA签发的有效证书才可以,当Node节点很多时,这种客户端证书颁发需要大量工作,同样也会增加集群扩展复杂度。为了简化流程,Kubernetes引入了TLS bootstraping机制来自动颁发客户端证书,kubelet会以一个低权限用户自动向apiserver申请证书,kubelet的证书由apiserver动态签署。所以强烈建议在Node上使用这种方式,目前主要用于kubelet,kube-proxy还是由我们统一颁发一个证书。
TLS bootstraping 工作流程:
# head -c 16 /dev/urandom | od -An -t x | tr -d ' '
dfbbade94a5f76a24802f5bc3cdd1b6a
# vim /data/kubernetes/cfg/token.csv
dfbbade94a5f76a24802f5bc3cdd1b6a,kubelet-bootstrap,10001,"system:kubelet-bootstrap"
5.启动并设置开机启动
#master01节点操作
systemctl daemon-reload
systemctl restart kube-apiserver
systemctl enable kube-apiserver
8.配置HA+keeplived高可用
yum install keepalived haproxy -y
1.Master配置HAProxy,Master节点都配置一样
vim /etc/haproxy/haproxy.cfg
global
maxconn 2000
ulimit-n 16384
log 127.0.0.1 local0 err
stats timeout 30s
defaults
log global
mode http
option httplog
timeout connect 5000
timeout client 50000
timeout server 50000
timeout http-request 15s
timeout http-keep-alive 15s
frontend k8s-master
bind 0.0.0.0:8443
bind 127.0.0.1:8443
mode tcp
option tcplog
tcp-request inspect-delay 5s
default_backend k8s-master
backend k8s-master
mode tcp
option tcplog
option tcp-check
balance roundrobin
default-server inter 10s downinter 5s rise 2 fall 2 slowstart 60s maxconn 250 maxqueue 256 weight 100
server k8s-master01 192.168.3.188:6443 check
server k8s-master02 192.168.3.189:6443 check
2.配置KeepAlived
vim /etc/keepalived/keepalived.conf
master01
! Configuration File for keepalived
global_defs {
router_id LVS_DEVEL
}
vrrp_script chk_apiserver {
script "/etc/keepalived/check_apiserver.sh"
interval 5
weight -5
fall 2
rise 1
}
vrrp_instance VI_1 {
state MASTER
interface ens33
mcast_src_ip 192.168.3.188
virtual_router_id 51
priority 101
nopreempt
advert_int 2
authentication {
auth_type PASS
auth_pass K8SHA_KA_AUTH
}
virtual_ipaddress {
192.168.3.246
}
track_script {
chk_apiserver
} }
master02
vim /etc/keepalived/keepalived.conf
! Configuration File for keepalived
global_defs {
router_id LVS_DEVEL
}
vrrp_script chk_apiserver {
script "/etc/keepalived/check_apiserver.sh"
interval 5
weight -5
fall 2
rise 1
}
vrrp_instance VI_1 {
state BACKUP
interface ens33
mcast_src_ip 192.168.3.189
virtual_router_id 51
priority 100
nopreempt
advert_int 2
authentication {
auth_type PASS
auth_pass K8SHA_KA_AUTH
}
virtual_ipaddress {
192.168.3.246
}
track_script {
chk_apiserver
} }
3.健康检查脚本(所有master节点)
cat > /etc/keepalived/check_apiserver.sh << EOF
#!/bin/bash
err=0
for k in $(seq 1 3)
do
check_code=$(pgrep haproxy)
if [[ $check_code == "" ]]; then
err=$(expr $err + 1)
sleep 1
continue
else
err=0
break
fi
done
if [[ $err != "0" ]]; then
echo "systemctl stop keepalived"
/usr/bin/systemctl stop keepalived
exit 1
else
exit 0
fi
EOF
# 授权
chmod +x /etc/keepalived/check_apiserver.sh
4.启动haproxy和keepalived(所有master节点)
systemctl daemon-reload
systemctl enable --now haproxy
systemctl enable --now keepalived
systemctl restart keepalived
systemctl restart haproxy
systemctl enable --now keepalived
9.部署kubectl
1.创建csr文件
[root@master1 work]# cat > admin-csr.json << EOF
{
"CN": "admin",
"hosts": [],
"key": {
"algo": "rsa",
"size": 2048
},
"names": [
{
"C": "CN",
"ST": "Qingdao",
"L": "Qingdao",
"O": "system:masters",
"OU": "system"
}
]
}
EOF
说明:
后续 kube-apiserver 使用 RBAC 对客户端(如 kubelet、kube-proxy、Pod)请求进行授权;
kube-apiserver 预定义了一些 RBAC 使用的 RoleBindings,如 cluster-admin 将 Group system:masters 与 Role cluster-admin 绑定,该 Role 授予了调用kube-apiserver 的所有 API的权限;
O指定该证书的 Group 为 system:masters,kubelet 使用该证书访问 kube-apiserver 时 ,由于证书被 CA 签名,所以认证通过,同时由于证书用户组为经过预授权的 system:masters,所以被授予访问所有 API 的权限;
注:
这个admin 证书,是将来生成管理员用的kube config 配置文件用的,现在我们一般建议使用RBAC 来对kubernetes 进行角色权限控制, kubernetes 将证书中的CN 字段 作为User, O 字段作为 Group;
“O”: “system:masters”, 必须是system:masters,否则后面kubectl create clusterrolebinding报错。
2.生成证书
[root@master1 work]# cfssl gencert -ca=ca.pem -ca-key=ca-key.pem -config=ca-config.json -profile=kubernetes admin-csr.json | cfssljson -bare admin
[root@master1 work]# cp admin*.pem /etc/kubernetes/ssl/
3. 创建kubeconfig配置文件
kubeconfig 为 kubectl 的配置文件,包含访问 apiserver 的所有信息,如 apiserver 地址、CA 证书和自身使用的证书
设置集群参数
[root@master1 work]# kubectl config set-cluster kubernetes --certificate-authority=ca.pem --embed-certs=true --server=https://192.168.3.246:8443 --kubeconfig=kube.config
设置客户端认证参数
[root@master1 work]# kubectl config set-credentials admin --client-certificate=admin.pem --client-key=admin-key.pem --embed-certs=true --kubeconfig=kube.config
设置上下文参数
[root@master1 work]# kubectl config set-context kubernetes --cluster=kubernetes --user=admin --kubeconfig=kube.config
设置默认上下文
[root@master1 work]# kubectl config use-context kubernetes --kubeconfig=kube.config
[root@master1 work]# mkdir ~/.kube
[root@master1 work]# cp kube.config ~/.kube/config
授权kubernetes证书访问kubelet api权限
[root@master1 work]# kubectl create clusterrolebinding kube-apiserver:kubelet-apis --clusterrole=system:kubelet-api-admin --user kubernetes
4. 查看集群组件状态
上面步骤完成后,kubectl就可以与kube-apiserver通信了
[root@master1 work]# kubectl cluster-info
[root@master1 work]# kubectl get componentstatuses
[root@master1 work]# kubectl get all --all-namespaces
同步kubectl配置文件到其他节点
[root@master1 work]# scp -rp /root/.kube/config master02:/root/.kube/
10. 部署kube-controller-manager
1. 生成kube-controller-manager证书
[root@master1 work]# vim kube-controller-manager-csr.json
{
"CN": "system:kube-controller-manager",
"key": {
"algo": "rsa",
"size": 2048
},
"hosts": [
"127.0.0.1",
"192.168.3.188",
"192.168.3.189"
],
"names": [
{
"C": "CN",
"ST": "Qingdao",
"L": "Qingdao",
"O": "system:kube-controller-manager",
"OU": "system"
}
]
}
注:
hosts 列表包含所有 kube-controller-manager 节点 IP;
CN 为 system:kube-controller-manager、O 为 system:kube-controller-manager,kubernetes 内置的 ClusterRoleBindings system:kube-controller-manager 赋予 kube-controller-manager 工作所需的权限
2. 生成证书
[root@master1 work]# cfssl gencert -ca=ca.pem -ca-key=ca-key.pem -config=ca-config.json -profile=kubernetes kube-controller-manager-csr.json | cfssljson -bare kube-controller-manager
[root@master1 work]# ll kube-controller-manager*.pem
创建kube-controller-manager的kubeconfig
设置集群参数
[root@master1 work]# kubectl config set-cluster kubernetes --certificate-authority=ca.pem --embed-certs=true --server=https://192.168.3.246:8443 --kubeconfig=kube-controller-manager.kubeconfig
设置客户端认证参数
[root@master1 work]# kubectl config set-credentials system:kube-controller-manager --client-certificate=kube-controller-manager.pem --client-key=kube-controller-manager-key.pem --embed-certs=true --kubeconfig=kube-controller-manager.kubeconfig
设置上下文参数
[root@master1 work]# kubectl config set-context system:kube-controller-manager --cluster=kubernetes --user=system:kube-controller-manager --kubeconfig=kube-controller-manager.kubeconfig
设置默认上下文
[root@master1 work]# kubectl config use-context system:kube-controller-manager --kubeconfig=kube-controller-manager.kubeconfig
3.创建配置文件
[root@master1 work]# vim kube-controller-manager.conf
KUBE_CONTROLLER_MANAGER_OPTS=" \
--bind-address=127.0.0.1 \
--kubeconfig=/etc/kubernetes/kube-controller-manager.kubeconfig \
--service-cluster-ip-range=10.255.0.0/16 \
--cluster-name=kubernetes \
--cluster-signing-cert-file=/etc/kubernetes/ssl/ca.pem \
--cluster-signing-key-file=/etc/kubernetes/ssl/ca-key.pem \
--allocate-node-cidrs=true \
--cluster-cidr=10.0.0.0/16 \
--experimental-cluster-signing-duration=87600h \
--root-ca-file=/etc/kubernetes/ssl/ca.pem \
--service-account-private-key-file=/etc/kubernetes/ssl/ca-key.pem \
--leader-elect=true \
--feature-gates=RotateKubeletServerCertificate=true \
--controllers=*,bootstrapsigner,tokencleaner \
--horizontal-pod-autoscaler-use-rest-clients=true \
--horizontal-pod-autoscaler-sync-period=10s \
--tls-cert-file=/etc/kubernetes/ssl/kube-controller-manager.pem \
--tls-private-key-file=/etc/kubernetes/ssl/kube-controller-manager-key.pem \
--use-service-account-credentials=true \
--alsologtostderr=true \
--logtostderr=false \
--log-dir=/var/log/kubernetes \
--v=2"
--kubeconfig:连接apiserver配置文件
--leader-elect:当该组件启动多个时,自动选举(HA)
--cluster-signing-cert-file/--cluster-signing-key-file:自动为kubelet颁发证书的CA,与apiserver保持一致
4.创建启动文件
[root@master1 work]# vim kube-controller-manager.service
[Unit]
Description=Kubernetes Controller Manager
Documentation=https://github.com/kubernetes/kubernetes
[Service]
EnvironmentFile=/etc/kubernetes/kube-controller-manager.conf
ExecStart=/usr/local/bin/kube-controller-manager $KUBE_CONTROLLER_MANAGER_OPTS
Restart=on-failure
RestartSec=5
[Install]
WantedBy=multi-user.target
同步相关文件到各个节点
[root@master1 work]# cp kube-controller-manager*.pem /etc/kubernetes/ssl/
[root@master1 work]# cp kube-controller-manager.kubeconfig /etc/kubernetes/
[root@master1 work]# cp kube-controller-manager.conf /etc/kubernetes/
[root@master1 work]# cp kube-controller-manager.service /usr/lib/systemd/system/
[root@master1 work]# scp -rp kube-controller-manager*.pem master02:/etc/kubernetes/ssl/
[root@master1 work]# scp -rp kube-controller-manager.kubeconfig kube-controller-manager.conf master02:/etc/kubernetes/
[root@master1 work]# scp -rp kube-controller-manager.service master02:/usr/lib/systemd/system/
5.启动服务
systemctl daemon-reload
systemctl enable kube-controller-manager
systemctl start kube-controller-manager
systemctl status kube-controller-manager
11.部署kube-scheduler
1.创建csr请求文件
[root@master1 work]# vim kube-scheduler-csr.json
{
"CN": "system:kube-scheduler",
"key": {
"algo": "rsa",
"size": 2048
},
"hosts": [
"127.0.0.1",
"192.168.3.188",
"192.168.3.189"
],
"names": [
{
"C": "CN",
"ST": "Qingdao",
"L": "Qingdao",
"O": "system:kube-scheduler",
"OU": "system"
}
]
}
注:
hosts 列表包含所有 kube-scheduler 节点 IP;
CN 为 system:kube-scheduler、O 为 system:kube-scheduler,kubernetes 内置的 ClusterRoleBindings system:kube-scheduler 将赋予 kube-scheduler 工作所需的权限。
2.生成证书
[root@master1 work]# cfssl gencert -ca=ca.pem -ca-key=ca-key.pem -config=ca-config.json -profile=kubernetes kube-scheduler-csr.json | cfssljson -bare kube-scheduler
[root@master1 work]# ll kube-scheduler*.pem
3.创建kube-scheduler的kubeconfig
设置集群参数
[root@master1 work]# kubectl config set-cluster kubernetes --certificate-authority=ca.pem --embed-certs=true --server=https://192.168.3.246:8443 --kubeconfig=kube-scheduler.kubeconfig
设置客户端认证参数
[root@master1 work]# kubectl config set-credentials system:kube-scheduler --client-certificate=kube-scheduler.pem --client-key=kube-scheduler-key.pem --embed-certs=true --kubeconfig=kube-scheduler.kubeconfig
设置上下文参数
[root@master1 work]# kubectl config set-context system:kube-scheduler --cluster=kubernetes --user=system:kube-scheduler --kubeconfig=kube-scheduler.kubeconfig
设置默认上下文
[root@master1 work]# kubectl config use-context system:kube-scheduler --kubeconfig=kube-scheduler.kubeconfig
4.创建配置文件
[root@master1 work]# vim kube-scheduler.conf
KUBE_SCHEDULER_OPTS="--address=127.0.0.1 \
--kubeconfig=/etc/kubernetes/kube-scheduler.kubeconfig \
--leader-elect=true \
--alsologtostderr=true \
--logtostderr=false \
--log-dir=/var/log/kubernetes \
--v=2"
5.创建服务启动文件
[root@master1 work]# vim kube-scheduler.service
[Unit]
Description=Kubernetes Scheduler
Documentation=https://github.com/kubernetes/kubernetes
[Service]
EnvironmentFile=-/etc/kubernetes/kube-scheduler.conf
ExecStart=/usr/local/bin/kube-scheduler $KUBE_SCHEDULER_OPTS
Restart=on-failure
RestartSec=5
[Install]
WantedBy=multi-user.target
6.同步相关文件到各个节点
cp kube-scheduler*.pem /etc/kubernetes/ssl/
cp kube-scheduler.kubeconfig /etc/kubernetes/
cp kube-scheduler.conf /etc/kubernetes/
cp kube-scheduler.service /usr/lib/systemd/system/
scp kube-scheduler*.pem master02:/etc/kubernetes/ssl/
scp kube-scheduler.kubeconfig kube-scheduler.conf master02:/etc/kubernetes/
scp kube-scheduler.service master02:/usr/lib/systemd/system/
7.启动服务
systemctl daemon-reload
systemctl enable kube-scheduler
systemctl start kube-scheduler
systemctl status kube-scheduler
12. 授权node允许请求证书
#创建node必备,不然node的kubelet无法启动,就是创建一个可以申请证书的用户
[root@master1 work]# BOOTSTRAP_TOKEN=$(awk -F "," '{print $1}' /etc/kubernetes/token.csv)
设置集群参数
[root@master1 work]# kubectl config set-cluster kubernetes --certificate-authority=ca.pem --embed-certs=true --server=https://192.168.3.246:8443 --kubeconfig=kubelet-bootstrap.kubeconfig
设置客户端认证参数
[root@master1 work]# kubectl config set-credentials kubelet-bootstrap --token=${BOOTSTRAP_TOKEN} --kubeconfig=kubelet-bootstrap.kubeconfig
设置上下文参数
[root@master1 work]# kubectl config set-context default --cluster=kubernetes --user=kubelet-bootstrap --kubeconfig=kubelet-bootstrap.kubeconfig
设置默认上下文
[root@master1 work]# kubectl config use-context default --kubeconfig=kubelet-bootstrap.kubeconfig
创建角色绑定
[root@master1 work]# kubectl create clusterrolebinding kubelet-bootstrap --clusterrole=system:node-bootstrapper --user=kubelet-bootstrap
13.部署node-kubelet
1 创建配置文件
master节点操作
[root@master1 work]# vim kubelet.json
{
"kind": "KubeletConfiguration",
"apiVersion": "kubelet.config.k8s.io/v1beta1",
"authentication": {
"x509": {
"clientCAFile": "/etc/kubernetes/ssl/ca.pem"
},
"webhook": {
"enabled": true,
"cacheTTL": "2m0s"
},
"anonymous": {
"enabled": false
}
},
"authorization": {
"mode": "Webhook",
"webhook": {
"cacheAuthorizedTTL": "5m0s",
"cacheUnauthorizedTTL": "30s"
}
},
"address": "192.168.3.199",
"port": 10250,
"readOnlyPort": 10255,
"cgroupDriver": "systemd",
"hairpinMode": "promiscuous-bridge",
"serializeImagePulls": false,
"featureGates": {
"RotateKubeletClientCertificate": true,
"RotateKubeletServerCertificate": true
},
"clusterDomain": "cluster.local.",
"clusterDNS": ["10.255.0.2"]
}
# 如果docker的驱动为systemd,cgroupDriver处修改为systemd。此处设置很重要,否则后面node节点无法加入到集群
创建启动文件
[root@master1 work]# vim kubelet.service
[Unit]
Description=Kubernetes Kubelet
Documentation=https://github.com/kubernetes/kubernetes
After=docker.service
Requires=docker.service
[Service]
WorkingDirectory=/var/lib/kubelet
ExecStart=/usr/local/bin/kubelet \
--bootstrap-kubeconfig=/etc/kubernetes/kubelet-bootstrap.kubeconfig \
--cert-dir=/etc/kubernetes/ssl \
--kubeconfig=/etc/kubernetes/kubelet.kubeconfig \
--config=/etc/kubernetes/kubelet.json \
--network-plugin=cni \
--pod-infra-container-image=k8s.gcr.io/pause:3.2 \
--alsologtostderr=true \
--logtostderr=false \
--log-dir=/var/log/kubernetes \
--v=2
Restart=on-failure
RestartSec=5
[Install]
WantedBy=multi-user.target
注: –hostname-override:显示名称,集群中唯一
–network-plugin:启用CNI
–kubeconfig:空路径,会自动生成,后面用于连接apiserver
–bootstrap-kubeconfig:首次启动向apiserver申请证书
–config:配置参数文件
–cert-dir:kubelet证书生成目录
–pod-infra-container-image:管理Pod网络容器的镜像
k8s.gcr.io/pause:3.2镜像无法直接下载,需通过阿里云镜像仓库下载:
[root@node01 ~]# docker pull registry.cn-hangzhou.aliyuncs.com/google_containers/pause:3.2
[root@node01 ~]# docker tag registry.cn-hangzhou.aliyuncs.com/google_containers/pause:3.2 k8s.gcr.io/pause:3.2
[root@node01 ~]# docker rmi registry.cn-hangzhou.aliyuncs.com/google_containers/pause:3.2
[root@node01 ~]# docker pull registry.cn-hangzhou.aliyuncs.com/google_containers/coredns:1.7.0
[root@node01 ~]# docker tag registry.cn-hangzhou.aliyuncs.com/google_containers/coredns:1.7.0 k8s.gcr.io/coredns:1.7.0
[root@node01 ~]# docker rmi registry.cn-hangzhou.aliyuncs.com/google_containers/coredns:1.7.0
[root@node01 ~]# mkdir /etc/kubernetes/ssl -p
2.同步文件到各个节点
[root@master1 work]# for i in node01 node02;do scp -rp kubelet-bootstrap.kubeconfig kubelet.json $i:/etc/kubernetes/;done
[root@master1 work]# for i in node01 node02;do scp -rp ca.pem $i:/etc/kubernetes/ssl/;done
[root@master1 work]# for i in node01 node02;do scp -rp kubelet.service $i:/usr/lib/systemd/system/;done
注:kubelete.json配置文件address改为各个节点的ip地址 启动服务 各个work节点上操作
[root@node1 ~]# mkdir /var/lib/kubelet
[root@node1 ~]# mkdir /var/log/kubernetes
systemctl daemon-reload
systemctl enable kubelet
systemctl start kubelet
systemctl status kubelet
确认kubelet服务启动成功后,接着到master上Approve一下bootstrap请求。执行如下命令可以看到2个worker节点分别发送了2个 CSR 请求:
3. 批准kubelet证书申请并加入集群
kubectl get csr
kubectl certificate approve 查询到的请求名称
[root@master1 work]# kubectl certificate approve node-csr-O73Wkk6YcpWMOb0Tmyt_AN2zxn1U5qqc6wlWufIL9Zo
[root@master1 work]# kubectl certificate approve node-csr-hWq-wet8Iqvql6vG2-lz5PeMT1L00XI8__g4tUrPrAs
[root@master1 work]# kubectl get csr
[root@master1 work]# kubectl get nodes
kubectl delete csr ode-csr-ulBg1w4mZCuReB8q1q2Une2BWXtuyl_vUXqu5En #删除csr
无法加入集群时,删除ssl证书文件即可
14. 部署kube-proxy
1. 创建csr请求文件
# 创建证书请求文件
cat > kube-proxy-csr.json << EOF
{
"CN": "system:kube-proxy",
"key": {
"algo": "rsa",
"size": 2048
},
"names": [{
"C": "CN",
"ST": "Qingdao",
"L": "Qingdao",
"O": "k8s",
"OU": "system"
}]
}
EOF
# 生成证书
[root@master1 work]# cfssl gencert -ca=ca.pem -ca-key=ca-key.pem -config=ca-config.json -profile=kubernetes kube-proxy-csr.json | cfssljson -bare kube-proxy
[root@master1 work]# ls kube-proxy*.pem
2 生成kubeconfig文件
[root@master1 work]# kubectl config set-cluster kubernetes --certificate-authority=ca.pem --embed-certs=true --server=https://192.168.3.246:8443 --kubeconfig=kube-proxy.kubeconfig
[root@master1 work]# kubectl config set-credentials kube-proxy --client-certificate=kube-proxy.pem --client-key=kube-proxy-key.pem --embed-certs=true --kubeconfig=kube-proxy.kubeconfig
[root@master1 work]# kubectl config set-context default --cluster=kubernetes --user=kube-proxy --kubeconfig=kube-proxy.kubeconfig
[root@master1 work]# kubectl config use-context default --kubeconfig=kube-proxy.kubeconfig
3 生成kube-proxy-config.yml
#node01节点操作
cat > kube-proxy.yaml << EOF
apiVersion: kubeproxy.config.k8s.io/v1alpha1
bindAddress: 192.168.3.199
clientConnection:
kubeconfig: /etc/kubernetes/kube-proxy.kubeconfig
clusterCIDR: 10.0.0.0/16
healthzBindAddress: 192.168.3.199:10256
kind: KubeProxyConfiguration
metricsBindAddress: 192.168.3.199:10249
mode: "ipvs"
EOF
#clusterCIDR 此处网段必须与网络组件网段保持一致,否则部署网络组件时会报错
4.创建启动文件
cat > kube-proxy.service << EOF
[Unit]
Description=Kubernetes Kube-Proxy Server
Documentation=https://github.com/kubernetes/kubernetes
After=network.target
[Service]
WorkingDirectory=/var/lib/kube-proxy
ExecStart=/usr/local/bin/kube-proxy \
--config=/etc/kubernetes/kube-proxy.yaml \
--alsologtostderr=true \
--logtostderr=false \
--log-dir=/var/log/kubernetes \
--v=2
Restart=on-failure
RestartSec=5
LimitNOFILE=65536
[Install]
WantedBy=multi-user.target
EOF
5.传送到其他节点
[root@master1 work]# for i in node01 node02;do scp kube-proxy.kubeconfig kube-proxy.yaml $i:/etc/kubernetes/;done
[root@master1 work]# for i in node1 node02;do scp kube-proxy.service $i:/usr/lib/systemd/system/;done
注意修改IP
6.启动
#node01 02节点操作
mkdir -p /var/lib/kube-proxy
systemctl daemon-reload
systemctl restart kube-proxy
systemctl enable kube-proxy
15. calico安装
[root@master1 work]# wget https://docs.projectcalico.org/v3.14/manifests/calico.yaml
[root@master1 work]# kubectl apply -f calico.yaml
[root@master1 work]# kubectl get pods -A
[root@master1 work]# kubectl get nodes
注意启动不起来可能是因为内存不够
16.部署coredns
wget https://raw.githubusercontent.com/kubernetes/kubernetes/master/cluster/addons/dns/coredns/coredns.yaml.base
cp coredns.yaml.base coredns.yaml
修改yaml文件:
kubernetes cluster.local in-addr.arpa ip6.arpa
forward . /etc/resolv.conf
clusterIP为:10.255.0.2(kubelet配置文件中的clusterDNS)
[root@master1 work]# cat coredns.yaml
apiVersion: v1
kind: ServiceAccount
metadata:
name: coredns
namespace: kube-system
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
labels:
kubernetes.io/bootstrapping: rbac-defaults
name: system:coredns
rules:
- apiGroups:
- ""
resources:
- endpoints
- services
- pods
- namespaces
verbs:
- list
- watch
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
annotations:
rbac.authorization.kubernetes.io/autoupdate: "true"
labels:
kubernetes.io/bootstrapping: rbac-defaults
name: system:coredns
roleRef:
apiGroup: rbac.authorization.k8s.io
kind: ClusterRole
name: system:coredns
subjects:
- kind: ServiceAccount
name: coredns
namespace: kube-system
---
apiVersion: v1
kind: ConfigMap
metadata:
name: coredns
namespace: kube-system
data:
Corefile: |
.:53 {
errors
health {
lameduck 5s
}
ready
kubernetes cluster.local in-addr.arpa ip6.arpa {
fallthrough in-addr.arpa ip6.arpa
}
prometheus :9153
forward . /etc/resolv.conf {
max_concurrent 1000
}
cache 30
loop
reload
loadbalance
}
---
apiVersion: apps/v1
kind: Deployment
metadata:
name: coredns
namespace: kube-system
labels:
k8s-app: kube-dns
kubernetes.io/name: "CoreDNS"
spec:
# replicas: not specified here:
# 1. Default is 1.
# 2. Will be tuned in real time if DNS horizontal auto-scaling is turned on.
strategy:
type: RollingUpdate
rollingUpdate:
maxUnavailable: 1
selector:
matchLabels:
k8s-app: kube-dns
template:
metadata:
labels:
k8s-app: kube-dns
spec:
priorityClassName: system-cluster-critical
serviceAccountName: coredns
tolerations:
- key: "CriticalAddonsOnly"
operator: "Exists"
nodeSelector:
kubernetes.io/os: linux
affinity:
podAntiAffinity:
preferredDuringSchedulingIgnoredDuringExecution:
- weight: 100
podAffinityTerm:
labelSelector:
matchExpressions:
- key: k8s-app
operator: In
values: ["kube-dns"]
topologyKey: kubernetes.io/hostname
containers:
- name: coredns
image: coredns/coredns:1.8.0
imagePullPolicy: IfNotPresent
resources:
limits:
memory: 170Mi
requests:
cpu: 100m
memory: 70Mi
args: [ "-conf", "/etc/coredns/Corefile" ]
volumeMounts:
- name: config-volume
mountPath: /etc/coredns
readOnly: true
ports:
- containerPort: 53
name: dns
protocol: UDP
- containerPort: 53
name: dns-tcp
protocol: TCP
- containerPort: 9153
name: metrics
protocol: TCP
securityContext:
allowPrivilegeEscalation: false
capabilities:
add:
- NET_BIND_SERVICE
drop:
- all
readOnlyRootFilesystem: true
livenessProbe:
httpGet:
path: /health
port: 8080
scheme: HTTP
initialDelaySeconds: 60
timeoutSeconds: 5
successThreshold: 1
failureThreshold: 5
readinessProbe:
httpGet:
path: /ready
port: 8181
scheme: HTTP
dnsPolicy: Default
volumes:
- name: config-volume
configMap:
name: coredns
items:
- key: Corefile
path: Corefile
---
apiVersion: v1
kind: Service
metadata:
name: kube-dns
namespace: kube-system
annotations:
prometheus.io/port: "9153"
prometheus.io/scrape: "true"
labels:
k8s-app: kube-dns
kubernetes.io/cluster-service: "true"
kubernetes.io/name: "CoreDNS"
spec:
selector:
k8s-app: kube-dns
clusterIP: 10.255.0.2
ports:
- name: dns
port: 53
protocol: UDP
- name: dns-tcp
port: 53
protocol: TCP
- name: metrics
port: 9153
protocol: TCP
[root@master1 work]# kubectl apply -f coredns.yaml
17.Dashboard
下载
wget https://raw.githubusercontent.com/kubernetes/dashboard/v2.0.0/aio/deploy/recommended.yaml
# 修改kubernetes-dashboard的Service类型
kind: Service
apiVersion: v1
metadata:
labels:
k8s-app: kubernetes-dashboard
name: kubernetes-dashboard
namespace: kubernetes-dashboard
spec:
type: NodePort # 新增
ports:
- port: 443
targetPort: 8443
nodePort: 30009 # 新增
selector:
k8s-app: kubernetes-dashboard
#kubectl create -f recommended.yaml
创建管理员用户
apiVersion: v1
kind: ServiceAccount
metadata:
name: admin-user
namespace: kube-system
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
name: admin-user
annotations:
rbac.authorization.kubernetes.io/autoupdate: "true"
roleRef:
apiGroup: rbac.authorization.k8s.io
kind: ClusterRole
name: cluster-admin
subjects:
- kind: ServiceAccount
name: admin-user
namespace: kube-system
#kubectl apply -f admin.yaml -n kube-system
访问地址:
获取token
kubectl -n kube-system describe secret $(kubectl -n kube-system get secret | grep admin-user | awk '{print $1}')
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· DeepSeek 开源周回顾「GitHub 热点速览」
· 物流快递公司核心技术能力-地址解析分单基础技术分享
· .NET 10首个预览版发布:重大改进与新特性概览!
· AI与.NET技术实操系列(二):开始使用ML.NET
· 单线程的Redis速度为什么快?