Flink TransForm (一)

TransForm 简介

 转换算子可以把一个或多个DataStream转成一个新的DataStream.程序可以把多个复杂的转换组合成复杂的数据流拓扑。

常用算子

1、map

作用 将数据流中的数据进行转换, 形成新的数据流,消费一个元素并产出一个元素

参数 lambda表达式或MapFunction实现类

返回 DataStream → DataStream

示例  

    public static void main(String[] args) throws Exception {
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        env.setParallelism(1);
        //从元素中读取数据
        DataStreamSource<Event> eventDStream = env.fromElements(
                new Event("令狐冲", "/home", 1000L),
                new Event("依琳", "/cat", 9000L),
                new Event("任盈盈", "/pay", 8000L)
        );
        //转换:提取 user
        //使用自定义类实现 ,MapFunction
        SingleOutputStreamOperator<String> users = eventDStream.map(new MyMapFun());
        //也可以使用匿名类实现
        SingleOutputStreamOperator<String> user1 = eventDStream.map(new MapFunction<Event, String>() {
            @Override
            public String map(Event value) throws Exception {
                return value.user;
            }
        });
        //对于只有一个方法而言:可以使用lambda 表达式
        SingleOutputStreamOperator<String> user2 = eventDStream.map(data -> data.user);
        users.print();
        user1.print();
        user2.print();

        env.execute();
    }

    //自定义 MapFunction
    public static class MyMapFun implements MapFunction<Event, String> {

        @Override
        public String map(Event value) throws Exception {
            return value.user;
        }
    }

2、flatMap

作用 消费一个元素并产生零个或多个元素

参数  FlatMapFunction实现类

返回 DataStream → DataStream

示例 

 public static void main(String[] args) throws Exception {
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        env.setParallelism(1);
        //从元素中读取数据
        DataStreamSource<Event> eventDStream = env.fromElements(
                new Event("令狐冲", "/home", 1000L),
                new Event("依琳", "/cat", 9000L),
                new Event("任盈盈", "/pay", 8000L)
        );
        //实现FlatMapFunction
        SingleOutputStreamOperator<String> flatmapRes = eventDStream.flatMap(new MyFlatMapFun());
        flatmapRes.print();
        //使用匿名类
        eventDStream.flatMap(new FlatMapFunction<Event, String>() {

            @Override
            public void flatMap(Event value, Collector<String> out) throws Exception {
                out.collect(value.user);
                out.collect(value.url);
                out.collect(value.timestamp.toString());
            }
        }).print();

        //使用lambda表达式
        eventDStream.flatMap((Event value, Collector<String> out) -> {
            out.collect(value.user);
            out.collect(value.url);
            out.collect(value.timestamp.toString());
        }).returns(new TypeHint<String>() {
        }).print();

        env.execute();
    }

    public static class MyFlatMapFun implements FlatMapFunction<Event, String> {

        @Override
        public void flatMap(Event value, Collector<String> out) throws Exception {
            out.collect(value.user);
            out.collect(value.url);
            out.collect(value.timestamp.toString());
        }
    }

3、filter

作用 根据指定的规则将满足条件(true)的数据保留,不满足条件(false)的数据丢弃

参数 FlatMapFunction实现类

返回 DataStream → DataStream

示例
    public static void main(String[] args) throws Exception {
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        env.setParallelism(1);
        //从元素中读取数据
        DataStreamSource<Event> eventDStream = env.fromElements(
                new Event("令狐冲", "/home", 1000L),
                new Event("依琳", "/cat", 9000L),
                new Event("任盈盈", "/pay", 8000L)
        );
        //传入实现了 filterFunc
        SingleOutputStreamOperator<Event> filter = eventDStream.filter(new MyFilterFun());
        //传入匿名类
        SingleOutputStreamOperator<Event> filter1 = eventDStream.filter(new FilterFunction<Event>() {
            @Override
            public boolean filter(Event value) throws Exception {
                return value.user.equals("依琳");
            }
        });
        //使用lambda表达式
        eventDStream.filter(data -> data.user.equals("依琳")).print();
        filter.print();
        filter1.print();
        env.execute();
    }

    public static class MyFilterFun implements FilterFunction<Event> {

        @Override
        public boolean filter(Event value) throws Exception {
            return value.user.equals("依琳");
        }
    }

4、Connect

作用 在某些情况下,需要将两个不同来源的数据流进行连接,实现数据匹配,比如订单支付和第三方交易信息,这两个信息的数据就来自于不同数据源,连接后,将订单支付和第三方交易信息进行对账,此时,才能算真正的支付完成。Flink中的connect算子可以连接两个保持他们类型的数据流,两个数据流被connect之后,只是被放在了一个同一个流中,内部依然保持各自的数据和形式不发生任何变化,两个流相互独立。

 

参数   另外一个流

返回   DataStream[A], DataStream[B] -> ConnectedStreams[A,B]

import org.apache.flink.streaming.api.datastream.ConnectedStreams;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.co.CoMapFunction;

public class Flink10_Transform_Connect {
    public static void main(String[] args) throws Exception {
        //1、获取执行环境
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        env.setParallelism(1);//若 并行度1 按顺序读取数据,否则不按顺序
        //2、从端口读取数据
        DataStreamSource<String> StringDS = env.socketTextStream("hadoop103", 9998);
        DataStreamSource<String> socketTextStream2 = env.socketTextStream("hadoop103", 9988);
        //3、将 socketTextStream2 转换为 Int
        SingleOutputStreamOperator<Integer> intDs = socketTextStream2.map(String::length); //方法引用
        //    SingleOutputStreamOperator<Integer> map = socketTextStream2.map(data -> data.length()); //lambel 表达式
        //4、连接 2 个流
        ConnectedStreams<String, Integer> connect = StringDS.connect(intDs);
       //5、处理连接之后的流
        SingleOutputStreamOperator<Object> map = connect.map(new CoMapFunction<String, Integer, Object>() {

            @Override
            public Object map1(String value) throws Exception {
                return value;
            }

            @Override
            public Object map2(Integer value) throws Exception {
                return value;
            }
        });
        //6、打印
        map.print();
        //7、执行
        env.execute();
    }
}
View Code
注意:
  1. 两个流中存储的数据类型可以不同
  2. 只是机械的合并在一起, 内部仍然是分离的2个流
  3. 只能2个流进行connect, 不能有第3个参与

5、union

 作用  对两个或者两个以上的DataStream进行union操作,产生一个包含所有DataStream元素的新DataStream

 

import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;


public class Flink01_Transform_Union {
    public static void main(String[] args) throws Exception {

        //1、获取执行环境
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        //2、读取端口数据
        DataStreamSource<String> socketTextStream1 = env.socketTextStream("hadoop103", 9998);
        DataStreamSource<String> socketTextStream2 = env.socketTextStream("hadoop103", 9988);
        //3、union 链接两个数据
        DataStream<String> union = socketTextStream1.union(socketTextStream2);
        //4、打印
        union.print();
        //5、执行
        env.execute();
    }
}
View Code
connect与 union 区别:
  • union之前两个流的类型必须是一样,connect可以不一样
  • connect只能操作两个流,union可以操作多个;

posted @ 2022-03-01 12:40  晓枫的春天  阅读(186)  评论(0编辑  收藏  举报