flume 拦截器的三个案例

今天整理下最近使用flume 

案例一:过滤非JSON数据

使用 flume 监控日志文件传到 kafka,由于业务需要只需要将日志里的 json 数据发送到 Kafka 即可,非 json 数据直接进行过滤。

1、pom.xml

    <build>
        <plugins>
            <plugin>
                <groupId>org.apache.maven.plugins</groupId>
                <artifactId>maven-compiler-plugin</artifactId>
                <configuration>
                    <source>7</source>
                    <target>7</target>
                </configuration>
            </plugin>
            <plugin>
                <artifactId>maven-compiler-plugin</artifactId>
                <version>2.3.2</version>
                <configuration>
                    <source>1.8</source>
                    <target>1.8</target>
                </configuration>
            </plugin>
            <plugin>
                <artifactId>maven-assembly-plugin</artifactId>
                <configuration>
                    <descriptorRefs>
                        <descriptorRef>jar-with-dependencies</descriptorRef>
                    </descriptorRefs>
                </configuration>
                <executions>
                    <execution>
                        <id>make-assembly</id>
                        <phase>package</phase>
                        <goals>
                            <goal>single</goal>
                        </goals>
                    </execution>
                </executions>
            </plugin>
        </plugins>
    </build>
    <dependencies>
        <dependency>
            <groupId>org.apache.flume</groupId>
            <artifactId>flume-ng-core</artifactId>
            <version>1.9.0</version>
            <scope>provided</scope>
        </dependency>

        <dependency>
            <groupId>com.alibaba</groupId>
            <artifactId>fastjson</artifactId>
            <version>1.2.62</version>
        </dependency>

    </dependencies>

2、JSONUtil 判断数据是否JSON

import com.alibaba.fastjson.JSONException;
import com.alibaba.fastjson.JSONObject;

/**
 * 判断参数是否是 JSON 数据
 */
public class JSONUtil {
    public static boolean isJSON(String log) {
        boolean flag = false;
        try {
            JSONObject.parseObject(log);
            flag = true;
        } catch (JSONException e) {

        }
        return flag;
    }
}

3、拦截器

import org.apache.flume.Context;
import org.apache.flume.Event;
import org.apache.flume.interceptor.Interceptor;

import java.nio.charset.StandardCharsets;
import java.util.Iterator;
import java.util.List;

/**
 * 自定义拦截器
 * 1、实现 Interceptor
 * 2、实现 Interceptor 的 4 个方法
 */
public class ETLInterceptor implements Interceptor {


    public void initialize() {

    }

    /**
     * 过滤非 JSON 数据
     * @param event
     * @return
     */
    public Event intercept(Event event) {
        //过滤 event 的 数据格式私发不满足JSON
        byte[] body = event.getBody();
        String log = new String(body, StandardCharsets.UTF_8);
        //判断是否 是JSON
        boolean flag = JSONUtil.isJSON(log);
        return flag ? event : null;
    }

    public List<Event> intercept(List<Event> list) {
        //使用迭代器将处理后的 null 删除
        Iterator<Event> iterator = list.iterator();
        while (iterator.hasNext()) {
            Event next = iterator.next();
            if (intercept(next) == null) {
                iterator.remove();
            }
        }
        return list;
    }

    public void close() {

    }

    public static class Builder implements Interceptor.Builder {

        @Override
        public Interceptor build() {
            return new ETLInterceptor();
        }

        @Override
        public void configure(Context context) {

        }
    }
}

4、编写完即可打包,将带有jar 文件的 jar 文件上传服务器

-rw-rw-r--. 1 hui hui  662626 Jan 30 09:51 collect.demo0125-1.0-SNAPSHOT-jar-with-dependencies.jar
[hui@hadoop201 lib]$ pwd
/opt/module/flume/lib

5、编写 flume 配置文件

[hui@hadoop201 job]$ cat file_to_kafka.conf 
#为各组件命名
a1.sources = r1
a1.channels = c1

#描述source
a1.sources.r1.type = TAILDIR
a1.sources.r1.filegroups = f1
a1.sources.r1.filegroups.f1 = /opt/module/applog/log/app.*
a1.sources.r1.positionFile = /opt/module/flume/taildir_position.json
a1.sources.r1.interceptors =  i1
a1.sources.r1.interceptors.i1.type = org.wdh01.flume.interceptor.ETLInterceptor$Builder

#描述channel
a1.channels.c1.type = org.apache.flume.channel.kafka.KafkaChannel
a1.channels.c1.kafka.bootstrap.servers = hadoop201:9092,hadoop202:9092
a1.channels.c1.kafka.topic = topic_log
#flume 默认 Event传输,false 表示已 字符串传输,不使用默认传输
a1.channels.c1.parseAsFlumeEvent = false

#绑定source和channel以及sink和channel的关系
a1.sources.r1.channels = c1

6、flume 启停脚本

[hui@hadoop201 ~]$ cat bin/f1.sh 
#!/bin/sh

case $1 in
"start"){
        for i in hadoop201 hadoop202
        do
                echo " --------启动 $i 采集flume-------"
                ssh $i "nohup /opt/module/flume/bin/flume-ng agent -n a1 -c /opt/module/flume/conf/ -f /opt/module/flume/job/file_to_kafka.conf >/dev/null 2>&1 &"
        done
};; 
"stop"){
        for i in hadoop201 hadoop202
        do
                echo " --------停止 $i 采集flume-------"
                ssh $i "ps -ef | grep file_to_kafka.conf | grep -v grep |awk  '{print \$2}' | xargs -n1 kill -9 "
        done

};;
esac

案例二

使用flume将案例一的kafka里的JSON数据传到hdfs的目标路径,由于时间延迟,为了避免零点漂移情况的发生,需要对读取的json 的时间做处理

1、拦截器 pom 文件同案例一

2、拦截器

import com.alibaba.fastjson.JSONObject;
import org.apache.flume.Context;
import org.apache.flume.Event;
import org.apache.flume.interceptor.Interceptor;

import java.nio.charset.StandardCharsets;
import java.util.List;
import java.util.Map;

/**
 * 时间戳自定义拦截器
 */
public class TimeStampInterceptor implements Interceptor {
    @Override
    public void initialize() {

    }

    @Override
    public Event intercept(Event event) {
        //修改 header 中的时间,改为日志数据中的时间,提供 hdfs sink 使用,使用正常的 时间作为日志文件名
        byte[] body = event.getBody();
        String log = new String(body, StandardCharsets.UTF_8);
        JSONObject jsonObject = JSONObject.parseObject(log);
        String timeStamp = jsonObject.getString("ts");
        //获取 header
        Map<String, String> headers = event.getHeaders();
        headers.put("timestamp", timeStamp);//注意 headers 的 key 是固定的 timestamp
        return event;
    }

    @Override
    public List<Event> intercept(List<Event> list) {
        for (Event event : list) {
            intercept(event);
        }
        return list;
    }

    @Override
    public void close() {

    }

    public static class Builder implements Interceptor.Builder {

        @Override
        public Interceptor build() {
            return new TimeStampInterceptor();
        }

        @Override
        public void configure(Context context) {

        }
    }
}

3、打包上传同案例一

4、flume配置文件

[hui@hadoop203 job]$ cat kafka_to_hdfs.conf
## 组件
a1.sources=r1
a1.channels=c1
a1.sinks=k1

## source1
a1.sources.r1.type = org.apache.flume.source.kafka.KafkaSource
#满足5k 及发送
a1.sources.r1.batchSize = 5000
#满足2s 发送
a1.sources.r1.batchDurationMillis = 2000
#kafka 链接
a1.sources.r1.kafka.bootstrap.servers = hadoop201:9092,hadoop202:9092,hadoop203:9092
a1.sources.r1.kafka.topics=topic_log
a1.sources.r1.interceptors = i1
a1.sources.r1.interceptors.i1.type = org.wdh01.flume.interceptor.TimeStampInterceptor$Builder

## channel1
a1.channels.c1.type = file
#检查点文件
a1.channels.c1.checkpointDir = /opt/module/flume/checkpoint/behavior1
#落盘文件
a1.channels.c1.dataDirs = /opt/module/flume/data/behavior1/
a1.channels.c1.maxFileSize = 2146435071
a1.channels.c1.capacity = 1000000
a1.channels.c1.keep-alive = 6


## sink1
a1.sinks.k1.type = hdfs
a1.sinks.k1.hdfs.path = /origin_data/gmall/log/topic_log/%Y-%m-%d
a1.sinks.k1.hdfs.filePrefix = log-


a1.sinks.k1.hdfs.rollInterval = 10
a1.sinks.k1.hdfs.rollSize = 134217728
a1.sinks.k1.hdfs.rollCount = 0

## 控制输出文件是原生文件。
a1.sinks.k1.hdfs.fileType = CompressedStream
a1.sinks.k1.hdfs.codeC = gzip

## 拼装
a1.sources.r1.channels = c1
a1.sinks.k1.channel= c1

5、启停脚本

[hui@hadoop201 ~]$ cat bin/f2.sh                         
#!/bin/bash

case $1 in
"start")
        echo " --------启动 hadoop203 日志数据flume-------"
        ssh hadoop203 "nohup /opt/module/flume/bin/flume-ng agent -n a1 -c /opt/module/flume/conf -f /opt/module/flume/job/kafka_to_hdfs.conf >/dev/null 2>&1 &"
;;
"stop")

        echo " --------停止 hadoop203 日志数据flume-------"
        ssh hadoop203 "ps -ef | grep kafka_to_hdfs.conf | grep -v grep |awk '{print \$2}' | xargs -n1 kill"
;;
esac

案例三

业务场景:需要使用maxwell监控mysql 的binlog ,将业务数据的变化实时发送到kafka 中,再利用flume 将这部分数据传到 hdfs 上,这里也需要编写一个时间拦截器,避免零点漂移

1、pom 文件同案例一

2、拦截器

import com.alibaba.fastjson.JSONObject;
import org.apache.flume.Context;
import org.apache.flume.Event;
import org.apache.flume.interceptor.Interceptor;

import java.nio.charset.StandardCharsets;
import java.util.List;
import java.util.Map;

/**
 * 业务数据 时间戳拦截器
 */
public class TimeStampInterceptor implements Interceptor {
    @Override
    public void initialize() {

    }

    @Override
    public Event intercept(Event event) {

        Map<String, String> headers = event.getHeaders();
        String log = new String(event.getBody(), StandardCharsets.UTF_8);

        JSONObject jsonObject = JSONObject.parseObject(log);

        Long ts = jsonObject.getLong("ts");

        //Maxwell输出的数据中的ts字段时间戳单位为秒,Flume HDFSSink要求单位为毫秒
        String timeMills = String.valueOf(ts * 1000);

        headers.put("timestamp", timeMills);

        return event;

    }

    @Override
    public List<Event> intercept(List<Event> events) {

        for (Event event : events) {
            intercept(event);
        }

        return events;
    }

    @Override
    public void close() {

    }

    public static class Builder implements Interceptor.Builder {


        @Override
        public Interceptor build() {
            return new TimeStampInterceptor();
        }

        @Override
        public void configure(Context context) {

        }
    }

}

3、打包上传同案例一

4、flume 配置文件

[hui@hadoop203 job]$ less  kafka_to_hdfs_db.conf
a1.sources = r1
a1.channels = c1
a1.sinks = k1

a1.sources.r1.type = org.apache.flume.source.kafka.KafkaSource
a1.sources.r1.batchSize = 5000
a1.sources.r1.batchDurationMillis = 2000
a1.sources.r1.kafka.bootstrap.servers = hadoop201:9092,hadoop202:9092
a1.sources.r1.kafka.topics = cart_info,comment_info,coupon_use,favor_info,order_detail_activity,order_detail_coupon,order_detail,order_info,order_refund_info,order_status_log,payment_info,refund_payment,user_info
a1.sources.r1.kafka.consumer.group.id = flume
a1.sources.r1.setTopicHeader = true
a1.sources.r1.topicHeader = topic

a1.sources.r1.interceptors = i1
a1.sources.r1.interceptors.i1.type = org.wdh01.flume.interceptor.db.TimeStampInterceptorNew$Builder


a1.channels.c1.type = file
a1.channels.c1.checkpointDir = /opt/module/flume/checkpoint/behavior2
a1.channels.c1.dataDirs = /opt/module/flume/data/behavior2
a1.channels.c1.maxFileSize = 2146435071
a1.channels.c1.capacity = 1123456
a1.channels.c1.keep-alive = 6

## sink1
a1.sinks.k1.type = hdfs
a1.sinks.k1.hdfs.path = /origin_data/gmall/db/%{topic}_inc/%Y-%m-%d
a1.sinks.k1.hdfs.filePrefix = db
a1.sinks.k1.hdfs.round = false


a1.sinks.k1.hdfs.rollInterval = 10
a1.sinks.k1.hdfs.rollSize = 134217728
a1.sinks.k1.hdfs.rollCount = 0


a1.sinks.k1.hdfs.fileType = CompressedStream
a1.sinks.k1.hdfs.codeC = gzip

## 拼装
a1.sources.r1.channels = c1
a1.sinks.k1.channel= c1

5、flume 启停

[hui@hadoop201 ~]$ cat bin/f3.sh  
#!/bin/bash

case $1 in
"start")
        echo " --------启动 hadoop203 业务数据flume-------"
        ssh hadoop203 "nohup /opt/module/flume/bin/flume-ng agent -n a1 -c /opt/module/flume/conf -f /opt/module/flume/job/kafka_to_hdfs_db.conf >/dev/null 2>&1 &"
;;
"stop")

        echo " --------停止 hadoop203 业务数据flume-------"
        ssh hadoop203 "ps -ef | grep kafka_to_hdfs_db.conf | grep -v grep |awk '{print \$2}' | xargs -n1 kill"
;;
esac

 

posted @ 2022-02-08 17:39  晓枫的春天  阅读(511)  评论(0编辑  收藏  举报