Hadoop 学习笔记(十二)Hadoop序列化
1、Hadoop 序列化简介
序列化:将内存中的对象转换成字节序列(或其它支持网络传输的数据),以便于存储到磁盘或网络传输,
反序列化:将收到的字节序列或者持久化在磁盘中的数据转换成内存中的对象;
Hadoop 序列化特点:
- 紧凑:高效使用存储空间;
- 高效:读写数据额外开销小
- 可扩展:随着通信协议的升级而升级;
- 互操作性:支持多语言环境操作
2、Haddop 示例
1 13736230513 192.196.100.1 www.wx,tv.com 2481 24681 200 2 13846544121 192.196.100.2 264 0 200 3 13956435636 192.196.100.3 132 1512 200 4 13966251146 192.168.100.1 240 0 404 5 18271575951 192.168.100.2 www.wx,tv.com 1527 2106 200 6 84188413 192.168.100.3 www.wx,tv.com 4116 1432 200 7 13590439668 192.168.100.4 1116 954 200 8 15910133277 192.168.100.5 www.hao123.com 3156 2936 200 9 13729199489 192.168.100.6 240 0 200 10 13630577991 192.168.100.7 www.shouhu.com 6960 690 200 11 15043685818 192.168.100.8 www.baidu.com 3659 3538 200 12 15959002129 192.168.100.9 www.wx,tv.com 1938 180 500 13 13560439638 192.168.100.10 918 4938 200 14 13470253144 192.168.100.11 180 180 200 15 13682846555 192.168.100.12 www.qq.com 1938 2910 200 16 13992314666 192.168.100.13 www.gaga.com 3008 3720 200 17 13509468723 192.168.100.14 www.qinghua.com 7335 110349 404 18 18390173782 192.168.100.15 www.sogou.com 9531 2412 200 19 13975057813 192.168.100.16 www.baidu.com 11058 48243 200 20 13768778790 192.168.100.17 120 120 200 21 13568436656 192.168.100.18 www.alibaba.com 2481 24681 200 22 13568436656 192.168.100.19 1116 954 200
编写程序统计所有号码的上行流量,下行流量和总流量:
输入数据格式:
7 13560436666 120.196.100.99 1116 954 200 id 手机号码 网络ip 上行流量 下行流量 网络状态码 |
期望输出数据格式
13560436666 1116 954 2070 手机号码 上行流量 下行流量 总流量 |
实现代码如下:
序列化实体 FlowBean
import java.io.DataInput; import java.io.DataOutput; import java.io.IOException; import org.apache.hadoop.io.Writable; public class FlowBean implements Writable { private long upFlow;// 上行流量 private long downFlow;// 下行流量 private long sumFlow;// 总流量 // 空参构造,后续反射使用 public FlowBean() { super(); } public FlowBean(long upFlow, long downFlow, long sumFlow) { super(); this.upFlow = upFlow; this.downFlow = downFlow; sumFlow = upFlow + downFlow; } @Override public String toString() { return upFlow + "\t" + downFlow + "\t" + sumFlow + "\t"; } public long getUpFlow() { return upFlow; } public void setUpFlow(long upFlow) { this.upFlow = upFlow; } public long getDownFlow() { return downFlow; } public void setDownFlow(long downFlow) { this.downFlow = downFlow; } public long getSumFlow() { return sumFlow; } public void setSumFlow(long sumFlow) { this.sumFlow = sumFlow; } @Override public void write(DataOutput out) throws IOException { // TODO Auto-generated method stub out.writeLong(upFlow); out.writeLong(downFlow); out.writeLong(sumFlow); } // 反序列化方法 @Override public void readFields(DataInput in) throws IOException { // TODO Auto-generated method stub // 需要和序列化方法顺序一致 upFlow = in.readLong(); downFlow = in.readLong(); sumFlow = in.readLong(); } public void set(long sum_upflow, long sum_downflow) { // TODO Auto-generated method stub upFlow = sum_upflow; downFlow = sum_downflow; sumFlow = sum_upflow + sum_downflow; } }
Map :FlowCountMapper
import org.apache.hadoop.io.LongWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Mapper; public class FlowCountMapper extends Mapper<LongWritable, Text, Text, FlowBean> { Text k = new Text(); FlowBean v = new FlowBean(); @Override protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException { // 1、获取一行 String line = value.toString(); // 2、切割 \t String[] fields = line.split("\t"); // 3、封装对象 k.set(fields[1]); long upFlow = Long.parseLong(fields[fields.length - 3]); long downFlow = Long.parseLong(fields[fields.length - 2]); v.setUpFlow(upFlow); v.setDownFlow(downFlow); // 4、写出 context.write(k, v); } }
Reduce:FlowCountReduce
import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Reducer; public class FlowCountReduce extends Reducer<Text, FlowBean, Text, FlowBean> { FlowBean v = new FlowBean(); @Override protected void reduce(Text key, Iterable<FlowBean> values, Context context) throws IOException, InterruptedException { // 1、累加求和 long sum_upflow = 0; long sum_downflow = 0; for (FlowBean flowBean : values) { sum_upflow += flowBean.getUpFlow(); sum_downflow = flowBean.getDownFlow(); } v.set(sum_upflow, sum_downflow); // 2、写出 context.write(key, v); } }
Driver:FlowsumDriver
import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; public class FlowsumDriver { public static void main(String[] args) throws Exception { args = new String[] {"E:/input1","E:/output1"}; // 1、获取 job 对象 Configuration configuration = new Configuration(); Job job = Job.getInstance(configuration); // 2、设置 jar 路径 job.setJarByClass(FlowsumDriver.class); // 3、关联 MR job.setMapperClass(FlowCountMapper.class); job.setReducerClass(FlowCountReduce.class); // 4、设置 Map 输出 KV 类型 job.setMapOutputKeyClass(Text.class); job.setMapOutputValueClass(FlowBean.class); // 5、设设置 Reduce 输出 KV 类型 job.setOutputKeyClass(Text.class); job.setOutputValueClass(FlowBean.class); // 6、设置输入输出路径 FileInputFormat.setInputPaths(job, new Path(args[0])); FileOutputFormat.setOutputPath(job, new Path(args[1])); // 7、提交 job job.waitForCompletion(true); } }
运行程序:得到结果文件:
13470253144 180 180 360 13509468723 7335 110349 117684 13560439638 918 4938 5856 13568436656 3597 954 4551 13590439668 1116 954 2070 13630577991 6960 690 7650 13682846555 1938 2910 4848 13729199489 240 0 240 13736230513 2481 24681 27162 13768778790 120 120 240 13846544121 264 0 264 13956435636 132 1512 1644 13966251146 240 0 240 13975057813 11058 48243 59301 13992314666 3008 3720 6728 15043685818 3659 3538 7197 15910133277 3156 2936 6092 15959002129 1938 180 2118 18271575951 1527 2106 3633 18390173782 9531 2412 11943 84188413 4116 1432 5548