二元函数可微的几何解释
%抛物面 close hold on r=0:0.02:2; theta=0:0.02:2*pi; [r1,theta1]=meshgrid(r,theta); x=r1.*cos(theta1); y=r1.*sin(theta1); z=r1.^2; surf(x,y,z) %点 (1,1,2) plot3(1,1,2,'*-r') %切平面 u=-0:0.1:2; v=-0:0.1:2; [x2,y2]=meshgrid(u,v); z2=2*(x2-1)+2*(y2-1)+2; surf(x2,y2,z2); %-pi/4割面 u1=0:0.1:4; v1=0:0.1:4; [x1,z1]=meshgrid(u1,v1); y1=cot(pi/4) *(1-x1)+1; surf(x1,y1,z1); %pi/4割面 [x1,z1]=meshgrid(u1,v1); y1=cot(pi*3/4) *(1-x1)+1; surf(x1,y1,z1); % z3=2*x2 + 2*y2; % surf(x2,y2,z3); %平行于yz平面过点的平面 u4=0:0.1:4; v4=0:0.1:4; [y4,z4]=meshgrid(u4,v4); x4=1+0*y4; surf(x4,y4,z4) %平行于xz平面过点的平面 u5=0:0.1:4; v5=0:0.1:4; [x5,z5]=meshgrid(u5,v5); y5=1+0*x5; surf(x5,y5,z5) quiver3(1, 1, 2,2/10,2/10,-1/10,'g') grid on axis equal
在可微点,存在切平面,过这点的曲面上所有曲线的切线在切平面上。
参考:
https://blog.csdn.net/weixin_40054912/article/details/79501962