线性方程组与基尔霍夫定律
对于c题,如果方程组中选择ABCD4个节点的电流方程,再加2个电压回路方程那么将得到一个奇异矩阵。
所以需要选择3个节点的电流方程,加三个节点的电压方程,
在使用基尔霍夫电压回路定律时,要选择一个绕行方向,如果电流方向跟该绕行方向同向取正(R*i) 否则取负(-R*I)对于像上面i3 i4这样的电流 可以当R=0 所以i*R=0进行计算
跟绕行方向相同的电源取负,反之取正, 比方上面我们 从D--->i1--> 8V电源--->A--->C---i5-->D 这样的逆时针绕行方向有方程
i4*0 - i1*4+8+i3*0+i5*4=0 即 -4 i4 + 4 i5= -8
下面代码是选择不容的绕行回路与方向,结果是一致的(2,0,-2,-2,0,2)。
【非奇异矩阵A对应的 Ax=b有唯一的解 因为 A^-1 A x=A^-1 b --> Ix=A^-1 b 即 向量x=A^-1 b 】
clc format short B_singular=[ -1 1 -1 0 0 0 1 -1 0 1 0 0 0 0 1 0 -1 1 0 0 0 -1 1 -1 4 2 0 0 0 0 0 0 0 0 4 5 ]; % % A=[ % 0 % 0 % 0 % 0 % 8 % 10 % ]; % % B=[ % -1 1 -1 0 0 0; % 1 -1 0 1 0 0; % 0 0 1 0 -1 1; % 0 2 0 0 4 0 % 4 2 0 0 0 0 % 0 0 0 0 4 5 % ]; % A=[ % 0 % 0 % 0 % 18 % 8 % 10 % ]; % % B=[ % -1 1 -1 0 0 0; % 1 -1 0 1 0 0; % 0 0 1 0 -1 1; % 4 0 0 0 0 5 % 4 2 0 0 0 0 % 0 0 0 0 4 5 % ]; % A=[ % 0 % 0 % 0 % 10 % 8 % 10 % ]; % % B=[ % -1 1 -1 0 0 0; % 1 -1 0 1 0 0; % 0 0 1 0 -1 1; % % 0 0 0 -1 1 -1 % 0 -2 0 0 0 5 % 4 2 0 0 0 0 % 0 0 0 0 4 5 % ]; A=[ 0 0 0 -8 8 10 ]; B=[ -1 1 -1 0 0 0; 1 -1 0 1 0 0; 0 0 1 0 -1 1; % 0 0 0 -1 1 -1 -4 0 0 0 4 0 4 2 0 0 0 0 0 0 0 0 4 5 ]; B^-1 * A
上面对应矩阵 B_singular ,将1,2行相加乘以 -1 ,替换第2行,将3,4行相加替换第3行,会发现2,3行是一样的,故存在冗余