一个函数与其导数的图象绘制
% x*(1-x)^(2/5)
% 对上面函数求导
% 2/5 2 x
% (1 - x) - ------------
% 3/5
% 5 (1 - x)
%该式在x>1 时由于 3/5次方存在变的无意义
%所以要使用下面的等价形式求导
diff(x*(x-1)^(2/5)) %当x>1时函数等价形式
ezplot('(2*x)/(5*(x - 1)^(3/5)) + (x - 1)^(2/5)',[1.01,2])
//==============绘制曲线与曲线指定点密切圆======================
clc clear close format long syms x y t0=1.001; t=-1:0.001:5; x1=t; y1=t.*(t-1).^(2/5); z1=t*0; plot(x1,y1); hold on Rx0=t0; Ry0=t0*(t0-1)^(2/5); plot(Rx0,Ry0,'*'); grid on axis equal df=diff(x); dg=diff(x*(x-1)^(2/5)); df2=diff(df); dg2=diff(dg); k=abs(df*dg2-dg*df2) / (df^2+dg^2)^(3/2); % pretty(k) kt0=subs(k,t0); df0=subs(df,t0); dg0=subs(dg,t0); Nx0=dg0/sqrt(dg0^2+df0^2); Ny0=-df0/sqrt(dg0^2+df0^2); Cx0=Rx0 + (1/kt0) *Nx0; Cy0=Ry0 + (1/kt0) *Ny0; plot(Cx0,Cy0,'*') x2=Cx0+cos(t)*(1/kt0); y2=Cy0+sin(t)*(1/kt0); plot(x2,y2); double(kt0) %n=-dg i+df j %n=dg i- df j % eval(solve('3*t/sqrt(1+t^2)=2.281'))