librosa常用功能
https://aistudio.csdn.net/62e38a44cd38997446774b92.html?spm=1001.2101.3001.6661.1&utm_medium=distribute.pc_relevant_t0.none-task-blog-2~default~BlogCommendFromBaidu~activity-1-79603994-blog-100940833.235^v32^pc_relevant_default_base&depth_1-utm_source=distribute.pc_relevant_t0.none-task-blog-2~default~BlogCommendFromBaidu~activity-1-79603994-blog-100940833.235^v32^pc_relevant_default_base&utm_relevant_index=1
二、librosa常用功能
核心音频处理函数
这部分介绍了最常用的音频处理函数,包括音频读取函数load( ),重采样函数resample( ),短时傅里叶变换stft( ),幅度转换函数amplitude_to_db( )以及频率转换函数hz_to_mel( )等。这部分函数很多,详细可参考librosa官网 http://librosa.github.io/ librosa/core.html
音频处理
频谱表示
幅度转换
时频转换
特征提取
本部分列举了一些常用的频谱特征的提取方法,包括常见的Mel Spectrogram、MFCC、CQT等。函数详细信息可参考http:// librosa.github.io/librosa/feature.html
绘图显示
包含了常用的频谱显示函数specshow( ), 波形显示函数waveplot( ),详细信息请参考http://librosa.github.io/librosa/display. html
三、常用功能代码实现
读取音频
绘图显示
绘制声音波形
Librosa有显示声音波形函数waveplot( ):
>>> import librosa
>>> import librosa.display
>>> # Load a wav file
>>> y, sr = librosa.load('./beat.wav', sr=None)
>>> # plot a wavform
>>> plt.figure()
>>> librosa.display.waveplot(y, sr)
>>> plt.title('Beat wavform')
>>> plt.show()
绘制频谱图
Librosa有显示频谱图波形函数specshow( ):
>>> import librosa
>>> import librosa.display
>>> # Load a wav file
>>> y, sr = librosa.load('./beat.wav', sr=None)
>>> # extract mel spectrogram feature
>>> melspec = librosa.feature.melspectrogram(y, sr, n_fft=1024, hop_length=512, n_mels=128)
>>> # convert to log scale
>>> logmelspec = librosa.power_to_db(melspec)
>>> # plot mel spectrogram
>>> plt.figure()
>>> librosa.display.specshow(logmelspec, sr=sr, x_axis='time', y_axis='mel')
>>> plt.title('Beat wavform')
>>> plt.show()
将声音波形和频谱图绘制在一张图表中:
>>> import librosa
>>> import librosa.display
>>> # Load a wav file
>>> y, sr = librosa.load('./beat.wav', sr=None)
>>> # extract mel spectrogram feature
>>> melspec = librosa.feature.melspectrogram(y, sr, n_fft=1024, hop_length=512, n_mels=128)
>>> # convert to log scale
>>> logmelspec = librosa.power_to_db(melspec)
>>> plt.figure()
>>> # plot a wavform
>>> plt.subplot(2, 1, 1)
>>> librosa.display.waveplot(y, sr)
>>> plt.title('Beat wavform')
>>> # plot mel spectrogram
>>> plt.subplot(2, 1, 2)
>>> librosa.display.specshow(logmelspec, sr=sr, x_axis='time', y_axis='mel')
>>> plt.title('Mel spectrogram')
>>> plt.tight_layout() #保证图不重叠
>>> plt.show()