随笔 - 262  文章 - 1  评论 - 22  阅读 - 27万

评价聚类结果之entropy(熵值)和purity(纯度)https://blog.csdn.net/vernice/article/details/46467449

使用k-means算法对数据进行聚类之后,通常需要验证一下聚类的效果。常用的验证方法包括entropy、purity、precious、F-measure、Recall,本文只介绍entropy和purity算法。

 

Entropy:

对于一个聚类i,首先计算。指的是聚类 i 中的成员(member)属于类(class)j 的概率,。其中是在聚类 i 中所有成员的个数,是聚类 i 中的成员属于类 j 的个数。每个聚类的entropy可以表示为,其中L是类(class)的个数。整个聚类划分的entropy为,其中K是聚类(cluster)的数目,m是整个聚类划分所涉及到的成员个数。

 

 

 

Purity:

使用上述Entropy中的定义,我们将聚类 i 的purity定义为。整个聚类划分的purity为,其中K是聚类(cluster)的数目,m是整个聚类划分所涉及到的成员个数。

 

下表是对取自洛杉矶时报的3204篇文章进行的k-means划分的结果,共分为6个cluster。这些文章取自娱乐、金融等六个类别。理想情况下每个cluster只含有某一特定类别的文章。其中,cluster 3 与体育类别吻合的比较好,所以其entropy很低,purity很高。

 


entropy和purity的核心代码(Python version)如下:


e_i = [0 for x in range(0,6)]
p_i = [0 for x in range(0,6)]
for i in range(0,cluster_num):
wr_line_part = ","
for j in range(0,6):
wr_line_part += str(M_aggregate[i][j]) + ','
p_i_j = M_aggregate[i][j]*1.0/m_i[i] + 0.00000001
print (p_i_j)
e_i[i] += 0 - p_i_j*math.log2(p_i_j)
if (p_i[i] < p_i_j):
p_i[i] = p_i_j
print (e_i[i])
print (p_i[i])

e = 0
p = 0
for i in range(0,6):
e += m_i[i]/m*e_i[i]
p += m_i[i]/m*p_i[i]


————————————————
版权声明:本文为CSDN博主「Yunhe_Feng」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/vernice/article/details/46467449

posted on   独上兰舟1  阅读(699)  评论(0编辑  收藏  举报
相关博文:
阅读排行:
· 开源Multi-agent AI智能体框架aevatar.ai,欢迎大家贡献代码
· Manus重磅发布:全球首款通用AI代理技术深度解析与实战指南
· 被坑几百块钱后,我竟然真的恢复了删除的微信聊天记录!
· 没有Manus邀请码?试试免邀请码的MGX或者开源的OpenManus吧
· 园子的第一款AI主题卫衣上架——"HELLO! HOW CAN I ASSIST YOU TODAY
< 2025年3月 >
23 24 25 26 27 28 1
2 3 4 5 6 7 8
9 10 11 12 13 14 15
16 17 18 19 20 21 22
23 24 25 26 27 28 29
30 31 1 2 3 4 5

点击右上角即可分享
微信分享提示