linearSVM代码
from sklearn import svm x = [[ 2 , 0 , 1 ],[ 1 , 1 , 2 ],[ 2 , 3 , 3 ]] y = [ 0 , 0 , 1 ] #分类标记 clf = svm.SVC(kernel = 'linear' ) #SVM模块,svc,线性核函数 clf.fit(x,y) print (clf) print (clf.support_vectors_) #支持向量点 print (clf.support_) #支持向量点的索引 print (clf.n_support_) #每个class有几个支持向量点 print (clf.predict([ 2 , 0 , 3 ])) #预测 |
线性,展示图:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
|
from sklearn import svm import numpy as np import matplotlib.pyplot as plt np.random.seed( 0 ) x = np.r_[np.random.randn( 20 , 2 ) - [ 2 , 2 ],np.random.randn( 20 , 2 ) + [ 2 , 2 ]] #正态分布来产生数字,20行2列*2 y = [ 0 ] * 20 + [ 1 ] * 20 #20个class0,20个class1 clf = svm.SVC(kernel = 'linear' ) clf.fit(x,y) w = clf.coef_[ 0 ] #获取w a = - w[ 0 ] / w[ 1 ] #斜率 #画图划线 xx = np.linspace( - 5 , 5 ) #(-5,5)之间x的值 yy = a * xx - (clf.intercept_[ 0 ]) / w[ 1 ] #xx带入y,截距 #画出与点相切的线 b = clf.support_vectors_[ 0 ] yy_down = a * xx + (b[ 1 ] - a * b[ 0 ]) b = clf.support_vectors_[ - 1 ] yy_up = a * xx + (b[ 1 ] - a * b[ 0 ]) print ( "W:" ,w) print ( "a:" ,a) print ( "support_vectors_:" ,clf.support_vectors_) print ( "clf.coef_:" ,clf.coef_) plt.figure(figsize = ( 8 , 4 )) plt.plot(xx,yy) plt.plot(xx,yy_down) plt.plot(xx,yy_up) plt.scatter(clf.support_vectors_[:, 0 ],clf.support_vectors_[:, 1 ],s = 80 ) plt.scatter(x[:, 0 ],x[:, 1 ],c = y,cmap = plt.cm.Paired) #[:,0]列切片,第0列 plt.axis( 'tight' ) plt.show() |