利用皮尔逊相关系数找出与目标最相关的特征(Python实现)
#coding:utf-8
#检测各特征和辐照度之间的相关性以及各个特征之间的相关性
from __future__ import division
import tensorflow as tf
import math
import csv
from sklearn import metrics
import numpy as np
from math import sqrt
from math import sqrt
from sklearn import preprocessing
i=0
j=[]
data = []
X = []
list=['0','1','2','3','4','5','6']
#with open('D:/辐照度数据表/day_winter.csv') as f:
with open(r'D:\夏季.csv') as f:
reader = csv.reader(f)
for row in reader:
if i == 0:
i += 1
continue
else:
data.append(row[:])
data = np.array(data)
print("the shape of data",np.shape(data))
m,n = np.shape(data)
print("the shape of data",m,n)
for i in range(m):
for j in range(n):
data[i][j] = data[i][j].astype('float64')
y = data[:,-1]
y1 = data[:,-1]
set2 = data[:,-1]
print("*******************************************************")
file = open("E:/predict_pierxun1.txt", 'a')
file.write("\n"+"\n")
file.write(" 雨天天气下各特征与辐照度的相关系数 "+"\n")
file.write("———————————————————————————————————"+"\n")
for i in range(12):
set1 = data[:, i]
set1 = set1.astype('float64')
set2 = set2.astype('float64')
fenzi = sum((set1 - np.mean(set1)) * (set2 - np.mean(set2)))
fenmu1 = sqrt(sum(pow((set1 - np.mean(set1)), 2)))
fenmu2 = sqrt(sum(pow((set2 - np.mean(set2)), 2)))
jieguo = fenzi / (fenmu1 * fenmu2)
jieguo1.append(jieguo)
print("*******************************************************")
jieguo2 = dict(map(lambda x,y:[x,y],list,jieguo1))
jieguo3 = dict(map(lambda x,y:[x,abs(y)],list,jieguo1))
def fun(s):
d = sorted(s.items(), key=lambda t: t[1], reverse=True)
return d
file.write("重要特征排序(按相关系数值的绝对值从大到小): "+"\n")
d = fun(jieguo2)
d1 = fun(jieguo3)
for f in range(7):
print("%d. feature %s (%f)" % (f + 1, d1[f][0], d1[f][1]))
file.write(str(d1[f][0])+" ")
file.write("\n")
————————————————
版权声明:本文为CSDN博主「simple_hututu」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/pwtd_huran/article/details/79729029
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 开发者必知的日志记录最佳实践
· SQL Server 2025 AI相关能力初探
· Linux系列:如何用 C#调用 C方法造成内存泄露
· AI与.NET技术实操系列(二):开始使用ML.NET
· 记一次.NET内存居高不下排查解决与启示
· 开源Multi-agent AI智能体框架aevatar.ai,欢迎大家贡献代码
· Manus重磅发布:全球首款通用AI代理技术深度解析与实战指南
· 被坑几百块钱后,我竟然真的恢复了删除的微信聊天记录!
· 没有Manus邀请码?试试免邀请码的MGX或者开源的OpenManus吧
· 园子的第一款AI主题卫衣上架——"HELLO! HOW CAN I ASSIST YOU TODAY