mapreduce 内存分配
稍微有点mapreduce使用经验的同学肯定对OOM不陌生,对的,我目前在mapReduce里面遇到的最多的报错也是内存分配出错,所以看到好多hadoop执行脚本里面有好多关于内存的参数,虽然是知道和内存分配有关系,但是我依然不太清楚具体的原理,从网上查阅相关资料,看到博主整理的,甚是欣慰,稍作整理如下:
关于mapreduce程序运行在yarn上时内存的分配一直是一个让我蒙圈的事情,单独查任何一个资料都不能很好的理解透彻。于是,最近查了大量的资料,综合各种解释,终于理解到了一个比较清晰的程度,在这里将理解的东西做一个简单的记录,以备忘却。
首先,先将关于mapreduce和yarn关于内存分配的参数粘贴上:
yarn.scheduler.minimum-allocation-mb
yarn.scheduler.maximum-allocation-mb
yarn.nodemanager.resource.memory-mb
yarn.nodemanager.vmem-pmem-ratio
yarn.scheduler.increment-allocation-mb
mapreduce.map.memory.mb
mapreduce.reduce.memory.mb
mapreduce.map.java.opts
mapreduce.reduce.java.opts
个人认为,针对mapreduce任务,这些参数只有放在一起学习才能真正理解,如果单独考虑,理解不清晰。下面开始详细讲解。
一、理解参数yarn.nodemanager.resource.memory-mb,yarn.nodemanager.vmem-pmem-ratio
yarn.nodemanager.resource.memory-mb很简单,就是你的这台服务器节点上准备分给yarn的内存;
yarn.nodemanager.vmem-pmem-ratio网上解释都是”每使用1MB物理内存,最多可用的虚拟内存数,默认2.1”,但是目前我还是不太理解其作用是什么,有知道的朋友希望能详细解释下。
二、理解参数yarn.scheduler.minimum-allocation-mb和yarn.scheduler.maximum-allocation-mb
都知道,在yarn上运行程序时每个task都是在独立的Container中运行的,单个Container可以申请的最小和最大内存的限制就是这两个参数,注意,并不是这两个参数决定单个Container申请内存的大小,而仅仅是限制的一个范围。
三、理解yarn的内存规整化因子和内存规整化算法
先不说和哪个参数有关,单纯理解这一概念。举例:
假如规整化因子b=512M,上述讲的参数yarn.scheduler.minimum-allocation-mb为1024,yarn.scheduler.maximum-allocation-mb为8096,然后我打算给单个map任务申请内存资源(mapreduce.map.memory.mb):
申请的资源为a=1000M时,实际得到的Container内存大小为1024M(小于yarn.scheduler.minimum-allocation-mb的话自动设置为yarn.scheduler.minimum-allocation-mb);
申请的资源为a=1500M时,实际得到的Container内存大小为1536M,计算公式为:ceiling(a/b)*b,即ceiling(a/b)=ceiling(1500/512)=3,3*512=1536。此处假如b=1024,则Container实际内存大小为2048M
也就是说Container实际内存大小最小为yarn.scheduler.minimum-allocation-mb值,然后增加时的最小增加量为规整化因子b,最大不超过yarn.scheduler.maximum-allocation-mb
四、理解mapreduce.map.memory.mb、mapreduce.reduce.memory.mb
“三”中提到的”打算给单个map任务申请内存资源”也就是a,其实就是指的”mapreduce.map.memory.mb”或”mapreduce.reduce.memory.mb”,注意其值不要超过yarn.scheduler.maximum-allocation-mb
五、理解mapreduce.map.java.opts、mapreduce.reduce.java.opts
以map任务为例,Container其实就是在执行一个脚本文件,而脚本文件中,会执行一个 Java 的子进程,这个子进程就是真正的 Map Task,mapreduce.map.java.opts 其实就是启动 JVM 虚拟机时,传递给虚拟机的启动参数,而默认值 -Xmx200m 表示这个 Java 程序可以使用的最大堆内存数,一旦超过这个大小,JVM 就会抛出 Out of Memory 异常,并终止进程。而 mapreduce.map.memory.mb 设置的是 Container 的内存上限,这个参数由 NodeManager 读取并进行控制,当 Container 的内存大小超过了这个参数值,NodeManager 会负责 kill 掉 Container。在后面分析 yarn.nodemanager.vmem-pmem-ratio 这个参数的时候,会讲解 NodeManager 监控 Container 内存(包括虚拟内存和物理内存)及 kill 掉 Container 的过程。
也就是说,mapreduce.map.java.opts一定要小于mapreduce.map.memory.mb
mapreduce.reduce.java.opts同mapreduce.map.java.opts一样的道理。
六、理解规整化因子指的是哪个参数
“三”中提到的规整化因子也就是b,具体指的是哪个参数和yarn使用的调度器有关,一共有三种调度器:capacity scheduler(默认调度器)、fair scheduler和fifo scheduler
当使用capacity scheduler或者fifo scheduler时,规整化因子指的就是参数yarn.scheduler.minimum-allocation-mb,不能单独配置,即yarn.scheduler.increment-allocation-mb无作用;
当使用fair scheduler时,规整化因子指的是参数yarn.scheduler.increment-allocation-mb
至此,关于yarn和mapreduce的任务内存配置问题讲完了,这也是我目前理解的层次。
MapReduce优化
优化(1)资源相关参数:
以下参数是在自己的 MapReduce 应用程序中配置就可以生效
mapreduce.map.memory.mb: 一个 Map Task 可使用的内存上限(单位:MB),默认为 1024。如果 Map Task 实际使用的资源量超过该值,则会被强制杀死。
mapreduce.reduce.memory.mb: 一个 Reduce Task 可使用的资源上限(单位:MB),默认为 1024。如果 Reduce Task 实际使用的资源量超过该值,则会被强制杀死。
mapreduce.map.cpu.vcores: 每个 Maptask 可用的最多 cpu core 数目, 默认值: 1
mapreduce.reduce.cpu.vcores: 每个 Reducetask 可用最多 cpu core 数目默认值: 1
mapreduce.map.java.opts: Map Task 的 JVM 参数,你可以在此配置默认的 java heap size 等参数, 例如:“-Xmx1024m -verbose:gc -Xloggc:/tmp/@taskid@.gc”
(@taskid@会被 Hadoop 框架自动换为相应的 taskid), 默认值: “”
mapreduce.reduce.java.opts:
Reduce Task 的 JVM 参数,你可以在此配置默认的 java heap size 等参数, 例如:“-Xmx1024m
-verbose:gc -Xloggc:/tmp/@taskid@.gc”, 默认值: “”
应该在 yarn 启动之前就配置在服务器的配置文件中才能生效
yarn.scheduler.minimum-allocation-mb RM 中每个容器请求的最小配置,以 MB 为单位,默认 1024。
yarn.scheduler.maximum-allocation-mb RM 中每个容器请求的最大分配,以 MB 为单位,默认 8192。
yarn.scheduler.minimum-allocation-vcores 1
yarn.scheduler.maximum-allocation-vcores 32
yarn.nodemanager.resource.memory-mb 表示该节点上YARN可使用的物理内存总量,默认是 8192(MB),注意,如果你的节点内存资源不够 8GB,则需要调减小这个值,而 YARN不会智能的探测节点的物理内存总量。
shuffle 性能优化的关键参数,应在 yarn 启动之前就配置好
mapreduce.task.io.sort.mb 100 shuffle 的环形缓冲区大小,默认 100m
mapreduce.map.sort.spill.percent 0.8 环形缓冲区溢出的阈值,默认 80%
优化(2)容错相关参数:
mapreduce.map.maxattempts: 每个 Map Task 最大重试次数,一旦重试参数超过该值,则认为 Map Task 运行失败,默认值:4。
mapreduce.reduce.maxattempts: 每个Reduce Task最大重试次数,一旦重试参数超过该值,则认为 Map Task 运行失败,默认值:4。
mapreduce.map.failures.maxpercent: 当失败的 Map Task 失败比例超过该值,整个作业则失败,默认值为 0. 如果你的应用程序允许丢弃部分输入数据,则该该值设为一个大于 0 的值,比如 5,表示如果有低于 5%的 Map Task 失败(如果一个 Map Task 重试次数超过mapreduce.map.maxattempts,则认为这个 Map Task 失败,其对应的输入数据将不会产生任何结果),整个作业扔认为成功。
mapreduce.reduce.failures.maxpercent: 当失败的 Reduce Task 失败比例超过该值为,整个作业则失败,默认值为 0.
mapreduce.task.timeout:如果一个task在一定时间内没有任何进入,即不会读取新的数据,也没有输出数据,则认为该 task 处于 block 状态,可能是临时卡住,也许永远会卡住。为了防止因为用户程序永远 block 不退出,则强制设置了一个超时时间(单位毫秒),默认是600000,值为 0 将禁用超时。
优化(3)效率跟稳定性参数(任务的推测执行):
Straggle(掉队者)是指那些跑的很慢但最终会成功完成的任务。一个掉队的Map任务会阻止Reduce任务开始执行。
Hadoop不能自动纠正掉队任务,但是可以识别那些跑的比较慢的任务,然后它会产生另一个等效的任务作为备份,并使用首先完成的那个任务的结果,此时另外一个任务则会被要求停止执行。这种技术称为推测执行(speculative execution)。
默认使用推测执行。
属性 描述
mapreduce.map.speculative 控制Map任务的推测执行(默认true)
mapreduce.reduce.speculative 控制Reduce任务的推测执行(默认true)
mapreduce.job.speculative.speculativecap 推测执行功能的任务能够占总任务数量的比例(默认0.1,范围0~1)
mapreduce.job.speculative.slownodethreshold 判断某个TaskTracker是否适合启动某个task的speculative task(默认1)
mapreduce.job.speculative.slowtaskthreshold 判断某个task是否可以启动speculative task(默认1)
mapreduce.input.fileinputformat.split.minsize FileInputFormat做切片时最小切片大小,默认 1。
mapreduce.input.fileinputformat.split.maxsize FileInputFormat做切片时最大切片大小
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· AI与.NET技术实操系列:基于图像分类模型对图像进行分类
· go语言实现终端里的倒计时
· 如何编写易于单元测试的代码
· 10年+ .NET Coder 心语,封装的思维:从隐藏、稳定开始理解其本质意义
· .NET Core 中如何实现缓存的预热?
· 25岁的心里话
· 基于 Docker 搭建 FRP 内网穿透开源项目(很简单哒)
· 闲置电脑爆改个人服务器(超详细) #公网映射 #Vmware虚拟网络编辑器
· 一起来玩mcp_server_sqlite,让AI帮你做增删改查!!
· 零经验选手,Compose 一天开发一款小游戏!