【数据结构】二叉排序树

 

二叉排序树(Binary Sort Tree)又称二叉查找树(Binary Search Tree),亦称二叉搜索树。

特点

 

二叉排序树或者是一棵空树,或者是具有下列性质的二叉树:

 

1、若左子树不空,则左子树上所有结点的值均小于它的根结点的值;

2、若右子树不空,则右子树上所有结点的值均大于它的根结点的值;

3、左、右子树也分别为二叉排序树;

4、没有键值相等的节点。

 

特性

 

二叉排序树通常采用二叉链表作为存储结构。中序遍历二叉排序树可得到一个依据关键字的有序序列,一个无序序列可以通过构造一棵二叉排序树变成一个有序序列,构造树的过程即是对无序序列进行排序的过程。每次插入的新的结点都是二叉排序树上新的叶子结点,在进行插入操作时,不必移动其它结点,只需改动某个结点的指针,由空变为非空即可。搜索、插入、删除的时间复杂度等于树高,期望O(logn),最坏O(n)(数列有序,树退化成线性表,如右斜树)。

 

查找算法

 

步骤:

1、若子树为空,查找不成功。

2、二叉树若根结点的关键字值等于查找的关键字,成功。

3、否则,若小于根结点的关键字值,递归查左子树。

4、若大于根结点的关键字值,递归查右子树。

 

插入算法

 

步骤:

1、执行查找算法,找出被插结点的父亲结点。

2、判断被插结点是其父亲结点的左、右儿子。将被插结点作为叶子结点插入。

3、若二叉树为空。则首先单独生成根结点。

 

删除算法

 

步骤:

1.若*p结点为叶子结点,即PL(左子树)和PR(右子树)均为空树。由于删去叶子结点不破坏整棵树的结构,则只需修改其双亲结点的指针即可。

 

 2.若*p结点只有左子树PL或右子树PR,此时只要令PL或PR直接成为其双亲结点*f的左子树(当*p是左子树)或右子树(当*p是右子树)即可,作此修改也不破坏二叉排序树的特性。

 

 3.若*p结点的左子树和右子树均不空。在删去*p之后,为保持其它元素之间的相对位置不变,可按中序遍历保持有序进行调整。比较好的做法是,找到*p的直接前驱(或直接后继)*s,用*s来替换结点*p,然后再删除结点*s。

 

二叉排序树的实现练习(Java

 

public class BinarySortTree {
    
    private TreeNode root=null;
    
    /**
     * 获取树的高度
     * @param subTree 
     * @return
     */
    private int height(TreeNode subTree){
        if(subTree == null){
            return 0;
        }else{
            int i = height(subTree.leftChild);
            int j = height(subTree.rightChild);
            return (i>j)?(i+1):(j+1);
        }
    }
    
    /**
     * 获取树的节点数
     * @param subTree
     * @return
     */
    private int size(TreeNode subTree){
        if(subTree == null){
            return 0;
        }else{
            return size(subTree.leftChild)+size(subTree.rightChild)+1;
        }
    }
    
    /**
     * 前序遍历  
     * @param subTree
     */
    public void preOrder(TreeNode subTree){  
        if(subTree!=null){
            visted(subTree);  
            preOrder(subTree.leftChild); 
            preOrder(subTree.rightChild); 
        }
    }  
      
    /**
     * 中序遍历  
     * @param subTree
     */
    public void inOrder(TreeNode subTree){  
        if(subTree!=null){  
            inOrder(subTree.leftChild);  
            visted(subTree);  
            inOrder(subTree.rightChild);  
        }  
    }  
      
    /**
     * 后续遍历  
     * @param subTree
     */
    public void postOrder(TreeNode subTree) {  
        if (subTree != null) {  
            postOrder(subTree.leftChild);  
            postOrder(subTree.rightChild);  
            visted(subTree);  
        }  
    }
    
    public void visted(TreeNode subTree){  
        System.out.print(subTree.data+",");
    }
    
    /**
     * 插入
     * @param subTree
     * @param iv
     */
    public void insertNote(TreeNode subTree, int iv){
        TreeNode newNode = new TreeNode(iv);
        if(subTree == null){
            this.root = newNode;
        }else if(subTree.data > iv){
            if(subTree.leftChild == null){
                subTree.leftChild = newNode;
                newNode.parent = subTree;
            }else{
                insertNote(subTree.leftChild, iv);
            }
        }else if(subTree.data < iv){
            if(subTree.rightChild == null){
                subTree.rightChild = newNode;
                newNode.parent = subTree;
            }else{
                insertNote(subTree.rightChild, iv);
            }
        }else{
            System.out.println("node has exist.");
        }
    }
    
    /**
     * 查询
     * @param subTree
     * @param fv
     * @return
     */
    public boolean findNote(TreeNode subTree, int fv){
        if(subTree == null){
            return false;
        }else if(subTree.data > fv){
            return findNote(subTree.leftChild, fv);
        }else if(subTree.data < fv){
            return findNote(subTree.rightChild, fv);
        }else{
            return true;
        }
    }
    
    /**
     * 删除节点
     * @param subTree
     * @param iv
     */
    public void deleteNote(TreeNode subTree, int dv){
        if(subTree == null){
            System.out.println("BST is empty.");
            
        }else if(subTree.data > dv){
            deleteNote(subTree.leftChild, dv);
            
        }else if(subTree.data < dv){
            deleteNote(subTree.rightChild, dv);
            
        }else{
            if(subTree.leftChild == null && subTree.rightChild == null){
                /*如果左右子树为空,怎直接删除该节点*/
                if(subTree.parent == null){
                    this.root = null;
                }else if(subTree.parent.leftChild == subTree){
                    subTree.parent.leftChild = null;
                    subTree.parent = null;
                }else if(subTree.parent.rightChild == subTree){
                    subTree.parent.rightChild = null;
                    subTree.parent = null;
                }
                
                
            }else if(subTree.leftChild != null && subTree.rightChild == null){
                /*如果左子树不为空而右子树为空,则直接用左子树根节点替换删除节点*/
                if(subTree.parent == null){
                    this.root = subTree.leftChild;
                }else if(subTree.parent.leftChild == subTree){
                    subTree.parent.leftChild = subTree.leftChild;
                }else if(subTree.parent.rightChild == subTree){
                    subTree.parent.rightChild = subTree.leftChild;
                }
                subTree.leftChild.parent = subTree.parent;
                subTree.parent = null;
                subTree.leftChild = null;
                subTree = null;
                
            }else if(subTree.leftChild == null && subTree.rightChild != null){
                /*如果左子树为空而右子树不为空,则直接用右子树根节点替换删除节点*/
                if(subTree.parent == null){
                    this.root = subTree.leftChild;
                }else if(subTree.parent.leftChild == subTree){
                    subTree.parent.leftChild = subTree.rightChild;
                }else if(subTree.parent.rightChild == subTree){
                    subTree.parent.rightChild = subTree.rightChild;
                }
                subTree.rightChild.parent = subTree.parent;
                subTree.parent = null;
                subTree.rightChild = null;
                subTree = null;
                
            }else{
                /*左右子树都不为空的情况下,直接找前驱替代P,并释放*/
                TreeNode p = subTree.leftChild;
                
                if(p.rightChild == null){
                    /*P是删除节点的左子树最大值,即前驱,替换删除节点*/
                    if(subTree.parent == null){
                        this.root = p;
                    }else if(subTree.parent.leftChild == subTree){
                        subTree.parent.leftChild = p;
                    }else if(subTree.parent.rightChild == subTree){
                        subTree.parent.rightChild = p;
                    }
                    p.parent = subTree.parent;
                    p.rightChild = subTree.rightChild;
                    subTree.rightChild.parent = p;
                    
                }else{
                    while(p.rightChild != null){
                        p = p.rightChild;
                    }
                    
                    if(p.leftChild != null){
                        p.parent.rightChild = p.leftChild;
                        p.leftChild.parent = p.parent;
                        p.parent = null;
                        p.leftChild = null;
                    }else{
                        p.parent.rightChild = null;
                        p.parent = null;
                    }
                    
                    /*P是删除节点的左子树最大值(即前驱),替换删除节点*/
                    if(subTree.parent == null){
                        this.root = p;
                    }else if(subTree.parent.leftChild == subTree){
                        subTree.parent.leftChild = p;
                    }else if(subTree.parent.rightChild == subTree){
                        subTree.parent.rightChild = p;
                    }
                    p.parent = subTree.parent;
                    p.leftChild = subTree.leftChild;
                    subTree.leftChild.parent = p;
                    p.rightChild = subTree.rightChild;
                    subTree.rightChild.parent = p;
                }
                
                subTree.parent = null;
                subTree.leftChild = null;
                subTree.rightChild = null;
                subTree = null;
            }
        }
    }
    
    /** 
     * 二叉树的节点数据结构 
     */  
    private class  TreeNode{
        
        private int data;
        private TreeNode parent = null;
        private TreeNode leftChild=null;
        private TreeNode rightChild=null;
        
        public TreeNode(int data){  
            this.data=data; 
        }  
    }
    
    public static void main(String[] args) {
        
        int[] tns = {1,3,4,6,7,8,10,13,14};
        
        for(int dv:tns){
            BinarySortTree bst = createBST();
            System.out.println("===============delete "+dv+" demo=====================");
            System.out.println("findNote("+dv+"):"+bst.findNote(bst.root, dv));    
            System.out.println("before delete inOrder:");
            bst.inOrder(bst.root);
            System.out.println("");

            bst.deleteNote(bst.root, dv);
            System.out.println("after delete inOrder:");
            bst.inOrder(bst.root);
            System.out.println("");
            System.out.println("");
        }
        
    }
    
    public static BinarySortTree createBST(){
        BinarySortTree bst = new BinarySortTree();
        bst.insertNote(bst.root, 8);
        bst.insertNote(bst.root, 3);
        bst.insertNote(bst.root, 10);
        bst.insertNote(bst.root, 1);
        bst.insertNote(bst.root, 6);
        bst.insertNote(bst.root, 14);
        bst.insertNote(bst.root, 4);
        bst.insertNote(bst.root, 7);
        bst.insertNote(bst.root, 13);
        return bst;
    }

}

 

 

 

运行结果:

===============delete 1 demo=====================

findNote(1):true

before delete inOrder:

1,3,4,6,7,8,10,13,14,

after delete inOrder:

3,4,6,7,8,10,13,14,

 

===============delete 3 demo=====================

findNote(3):true

before delete inOrder:

1,3,4,6,7,8,10,13,14,

after delete inOrder:

1,4,6,7,8,10,13,14,

 

===============delete 4 demo=====================

findNote(4):true

before delete inOrder:

1,3,4,6,7,8,10,13,14,

after delete inOrder:

1,3,6,7,8,10,13,14,

 

===============delete 6 demo=====================

findNote(6):true

before delete inOrder:

1,3,4,6,7,8,10,13,14,

after delete inOrder:

1,3,4,7,8,10,13,14,

 

===============delete 7 demo=====================

findNote(7):true

before delete inOrder:

1,3,4,6,7,8,10,13,14,

after delete inOrder:

1,3,4,6,8,10,13,14,

 

===============delete 8 demo=====================

findNote(8):true

before delete inOrder:

1,3,4,6,7,8,10,13,14,

after delete inOrder:

1,3,4,6,7,10,13,14,

 

===============delete 10 demo=====================

findNote(10):true

before delete inOrder:

1,3,4,6,7,8,10,13,14,

after delete inOrder:

1,3,4,6,7,8,13,14,

 

===============delete 13 demo=====================

findNote(13):true

before delete inOrder:

1,3,4,6,7,8,10,13,14,

after delete inOrder:

1,3,4,6,7,8,10,14,

 

===============delete 14 demo=====================

findNote(14):true

before delete inOrder:

1,3,4,6,7,8,10,13,14,

after delete inOrder:

1,3,4,6,7,8,10,13,

posted @ 2016-05-06 14:43  wc的一些事一些情  阅读(478)  评论(0编辑  收藏  举报