K-means算法Java实现
public
class
KMeansCluster {
private
int
k;
//簇的个数
private
int
num =
100000
;
//迭代次数
private
List<
double
> datas;
//原始样本集
private
String address;
//样本集路径
private
List<point> data =
new
ArrayList<point>();
private
AbstractDistance distance =
new
AbstractDistance() {
@Override
public
double
getDis(Point p1, Point p2) {
//欧几里德距离
return
Math.sqrt(Math.pow(p1.getX() - p2.getX(),
2
) + Math.pow(p1.getY() - p2.getY(),
2
));
}
};
public
KMeansCluster(
int
k,
int
num, String address) {
this
.k = k;
this
.num = num;
this
.address = address;
}
public
KMeansCluster(
int
k, String address) {
this
.k = k;
this
.address = address;
}
public
KMeansCluster(
int
k, List<
double
> datas) {
this
.k = k;
this
.datas = datas;
}
public
KMeansCluster(
int
k,
int
num, List<
double
> datas) {
this
.k = k;
this
.num = num;
this
.datas = datas;
}
private
void
check() {
if
(k ==
0
)
throw
new
IllegalArgumentException(
"k must be the number > 0"
);
if
(address ==
null
&& datas ==
null
)
throw
new
IllegalArgumentException(
"program can't get real data"
);
}
/**
* 初始化数据
*
* @throws java.io.FileNotFoundException
*/
public
void
init()
throws
FileNotFoundException {
check();
//读取文件,init data
//处理原始数据
for
(
int
i =
0
, j = datas.size(); i < j; i++)
data.add(
new
Point(i, datas.get(i),
0
));
}
/**
* 第一次随机选取中心点
*
* @return
*/
public
Set<point> chooseCenter() {
Set<point> center =
new
HashSet<point>();
Random ran =
new
Random();
int
roll =
0
;
while
(center.size() < k) {
roll = ran.nextInt(data.size());
center.add(data.get(roll));
}
return
center;
}
/**
* @param center
* @return
*/
public
List<cluster> prepare(Set<point> center) {
List<cluster> cluster =
new
ArrayList<cluster>();
Iterator<point> it = center.iterator();
int
id =
0
;
while
(it.hasNext()) {
Point p = it.next();
if
(p.isBeyond()) {
Cluster c =
new
Cluster(id++, p);
c.addPoint(p);
cluster.add(c);
}
else
cluster.add(
new
Cluster(id++, p));
}
return
cluster;
}
/**
* 第一次运算,中心点为样本值
*
* @param center
* @param cluster
* @return
*/
public
List<cluster> clustering(Set<point> center, List<cluster> cluster) {
Point[] p = center.toArray(
new
Point[
0
]);
TreeSet<distence> distence =
new
TreeSet<distence>();
//存放距离信息
Point source;
Point dest;
boolean
flag =
false
;
for
(
int
i =
0
, n = data.size(); i < n; i++) {
distence.clear();
for
(
int
j =
0
; j < center.size(); j++) {
if
(center.contains(data.get(i)))
break
;
flag =
true
;
// 计算距离
source = data.get(i);
dest = p[j];
distence.add(
new
Distence(source, dest, distance));
}
if
(flag ==
true
) {
Distence min = distence.first();
for
(
int
m =
0
, k = cluster.size(); m < k; m++) {
if
(cluster.get(m).getCenter().equals(min.getDest()))
cluster.get(m).addPoint(min.getSource());
}
}
flag =
false
;
}
return
cluster;
}
/**
* 迭代运算,中心点为簇内样本均值
*
* @param cluster
* @return
*/
public
List<cluster> cluster(List<cluster> cluster) {
// double error;
Set<point> lastCenter =
new
HashSet<point>();
for
(
int
m =
0
; m < num; m++) {
// error = 0;
Set<point> center =
new
HashSet<point>();
// 重新计算聚类中心
for
(
int
j =
0
; j < k; j++) {
List<point> ps = cluster.get(j).getMembers();
int
size = ps.size();
if
(size <
3
) {
center.add(cluster.get(j).getCenter());
continue
;
}
// 计算距离
double
x =
0.0
, y =
0.0
;
for
(
int
k1 =
0
; k1 < size; k1++) {
x += ps.get(k1).getX();
y += ps.get(k1).getY();
}
//得到新的中心点
Point nc =
new
Point(-
1
, x / size, y / size,
false
);
center.add(nc);
}
if
(lastCenter.containsAll(center))
//中心点不在变化,退出迭代
break
;
lastCenter = center;
// 迭代运算
cluster = clustering(center, prepare(center));
// for (int nz = 0; nz < k; nz++) {
// error += cluster.get(nz).getError();//计算误差
// }
}
return
cluster;
}
/**
* 输出聚类信息到控制台
*
* @param cs
*/
public
void
out2console(List<cluster> cs) {
for
(
int
i =
0
; i < cs.size(); i++) {
System.out.println(
"No."
+ (i +
1
) +
" cluster:"
);
Cluster c = cs.get(i);
List<point> p = c.getMembers();
for
(
int
j =
0
; j < p.size(); j++) {
System.out.println(
"\t"
+ p.get(j).getX() +
" "
);
}
System.out.println();
}
}
}