K-means算法Java实现

public class KMeansCluster { 

        private int k;//簇的个数 
        private int num = 100000;//迭代次数 
        private List<double> datas;//原始样本集 
        private String address;//样本集路径 
        private List<point> data = new ArrayList<point>(); 
        private AbstractDistance distance = new AbstractDistance() { 
            @Override 
            public double getDis(Point p1, Point p2) { 
                //欧几里德距离 
                return Math.sqrt(Math.pow(p1.getX() - p2.getX(), 2) + Math.pow(p1.getY() - p2.getY(), 2)); 
            
        }; 
       
        public KMeansCluster(int k, int num, String address) { 
            this.k = k; 
            this.num = num; 
            this.address = address; 
        
       
        public KMeansCluster(int k, String address) { 
            this.k = k; 
            this.address = address; 
        
       
        public KMeansCluster(int k, List<double> datas) { 
            this.k = k; 
            this.datas = datas; 
        
       
        public KMeansCluster(int k, int num, List<double> datas) { 
            this.k = k; 
            this.num = num; 
            this.datas = datas; 
        
       
        private void check() { 
            if (k == 0
                throw new IllegalArgumentException("k must be the number > 0"); 
       
            if (address == null && datas == null
                throw new IllegalArgumentException("program can't get real data"); 
        
       
        /**
         * 初始化数据
         *
         * @throws java.io.FileNotFoundException
         */ 
        public void init() throws FileNotFoundException { 
            check(); 
            //读取文件,init data 
            //处理原始数据 
            for (int i = 0, j = datas.size(); i < j; i++) 
                data.add(new Point(i, datas.get(i), 0)); 
        
       
        /**
         * 第一次随机选取中心点
         *
         * @return
         */ 
        public Set<point> chooseCenter() { 
            Set<point> center = new HashSet<point>(); 
            Random ran = new Random(); 
            int roll = 0
            while (center.size() < k) { 
                roll = ran.nextInt(data.size()); 
                center.add(data.get(roll)); 
            
            return center; 
        
       
        /**
         * @param center
         * @return
         */ 
        public List<cluster> prepare(Set<point> center) { 
            List<cluster> cluster = new ArrayList<cluster>(); 
            Iterator<point> it = center.iterator(); 
            int id = 0
            while (it.hasNext()) { 
                Point p = it.next(); 
                if (p.isBeyond()) { 
                    Cluster c = new Cluster(id++, p); 
                    c.addPoint(p); 
                    cluster.add(c); 
                else 
                    cluster.add(new Cluster(id++, p)); 
            
            return cluster; 
        
       
        /**
         * 第一次运算,中心点为样本值
         *
         * @param center
         * @param cluster
         * @return
         */ 
        public List<cluster> clustering(Set<point> center, List<cluster> cluster) { 
            Point[] p = center.toArray(new Point[0]); 
            TreeSet<distence> distence = new TreeSet<distence>();//存放距离信息 
            Point source; 
            Point dest; 
            boolean flag = false
            for (int i = 0, n = data.size(); i < n; i++) { 
                distence.clear(); 
                for (int j = 0; j < center.size(); j++) { 
                    if (center.contains(data.get(i))) 
                        break
       
                    flag = true
                    // 计算距离 
                    source = data.get(i); 
                    dest = p[j]; 
                    distence.add(new Distence(source, dest, distance)); 
                
                if (flag == true) { 
                    Distence min = distence.first(); 
                    for (int m = 0, k = cluster.size(); m < k; m++) { 
                        if (cluster.get(m).getCenter().equals(min.getDest())) 
                            cluster.get(m).addPoint(min.getSource()); 
       
                    
                
                flag = false
            
       
            return cluster; 
        
       
        /**
         * 迭代运算,中心点为簇内样本均值
         *
         * @param cluster
         * @return
         */ 
        public List<cluster> cluster(List<cluster> cluster) { 
    //        double error; 
            Set<point> lastCenter = new HashSet<point>(); 
            for (int m = 0; m < num; m++) { 
    //            error = 0; 
                Set<point> center = new HashSet<point>(); 
                // 重新计算聚类中心 
                for (int j = 0; j < k; j++) { 
                    List<point> ps = cluster.get(j).getMembers(); 
                    int size = ps.size(); 
                    if (size < 3) { 
                        center.add(cluster.get(j).getCenter()); 
                        continue
                    
                    // 计算距离 
                    double x = 0.0, y = 0.0
                    for (int k1 = 0; k1 < size; k1++) { 
                        x += ps.get(k1).getX(); 
                        y += ps.get(k1).getY(); 
                    
                    //得到新的中心点 
                    Point nc = new Point(-1, x / size, y / size, false); 
                    center.add(nc); 
                
                if (lastCenter.containsAll(center))//中心点不在变化,退出迭代 
                    break
                lastCenter = center; 
                // 迭代运算 
                cluster = clustering(center, prepare(center)); 
    //            for (int nz = 0; nz < k; nz++) { 
    //                error += cluster.get(nz).getError();//计算误差 
    //            } 
            
            return cluster; 
        
       
        /**
         * 输出聚类信息到控制台
         *
         * @param cs
         */ 
        public void out2console(List<cluster> cs) { 
            for (int i = 0; i < cs.size(); i++) { 
                System.out.println("No." + (i + 1) + " cluster:"); 
                Cluster c = cs.get(i); 
                List<point> p = c.getMembers(); 
                for (int j = 0; j < p.size(); j++) { 
                    System.out.println("\t" + p.get(j).getX() + " "); 
                
                System.out.println(); 
            
        
    }
posted @   小毛驴  阅读(5469)  评论(0编辑  收藏  举报
努力加载评论中...
点击右上角即可分享
微信分享提示