dfs-bfs
/图的遍历是指按某条搜索路径访问图中每个结点,使得每个结点均被访问一次,而且仅被访问一次。图的遍历有深度遍历算法和广度遍历算法 #include <malloc.h> #include <iostream> using namespace std; #define INFINITY 32767 #define MAX_VEX 50 //最大顶点个数 #define QUEUE_SIZE (MAX_VEX+1) //队列长度 #define OK 1 #define FALSE 0 #define TRUE 1 #define ERROR -1 bool *visited; //动态分配访问标志数组 //图的邻接矩阵存储结构 typedef struct { char *vexs; //动态分配空间存储顶点向量 int arcs[MAX_VEX][MAX_VEX]; //邻接矩阵 int vexnum, arcnum; //图的当前定点数和弧数 }Graph; //队列类 class Queue{ public: void InitQueue(){ base=(int *)malloc(QUEUE_SIZE*sizeof(int)); front=rear=0; } void EnQueue(int e){ base[rear]=e; rear=(rear+1)%QUEUE_SIZE; } void DeQueue(int &e){ e=base[front]; front=(front+1)%QUEUE_SIZE; } public: int *base; int front; int rear; }; //图G中查找顶点c的位置 int LocateVex(Graph G, char c) { for(int i = 0; i < G.vexnum; ++i) { if(G.vexs[i] == c) return i; } return ERROR; } //创建无向网 void CreateUDN(Graph &G){ //采用数组(邻接矩阵)表示法,构造无向网G cout << "请输入定点数和弧数:"; cin >> G.vexnum >> G.arcnum; cout << "请输入" << G.vexnum << "个顶点" << endl; G.vexs = (char *) malloc((G.vexnum+1) * sizeof(char)); //需要开辟多一个空间存储'\0' //构造顶点向量 for(int i = 0; i < G.vexnum; i++) { cout << "请输入第" << i+1 << "个顶点:"; cin >> G.vexs[i]; } G.vexs[G.vexnum] = '\0'; //初始化邻接矩阵 for(i = 0; i < G.vexnum; ++i) for( int j = 0; j < G.vexnum; j++) G.arcs[i][j] = INFINITY; cout << "请输入" << G.arcnum << "条弧" << endl; char a, b; int s1, s2; for(i = 0; i < G.arcnum; ++i) { cout << "请输入第" << i+1 << "条弧:"; cin >> a >> b ; //输入依附于弧的权值 s1 = LocateVex(G,a); //找到a和b在顶点向量中的位置 s2 = LocateVex(G,b); G.arcs[s1][s2] = G.arcs[s2][s1] = 1; //权值默认为1 } } //图G中顶点k的第一个邻接顶点 int FirstVex(Graph G,int k){ for(int i = 0; i < G.vexnum; ++i) if (G.arcs[k][i] != INFINITY) return i; return ERROR; } //返回i(相对于j)的下一个邻接顶点 int NextVex(Graph G,int i,int j){ for(int k = j+1; k < G.vexnum; ++k) if(G.arcs[i][k] != INFINITY) return k; return ERROR; } void DFS(Graph G, int v) { //从第v个顶点出发递归地深度优先遍历图G visited[v] = TRUE; cout << G.vexs[v] << " "; for(int w = FirstVex(G,v); w >= 0; w = NextVex(G,v,w)) if(!visited[w]) DFS(G,w); } //深度优先遍历 void DFSTraverse(Graph G, int i) { for(int j = 0; j < G.vexnum; ++j) { //初始化所有的顶点状态为未被访问 visited[j] = FALSE; } //遍历结点 for(; i < G.vexnum; ++i) if(!visited[i]) DFS(G,i); } //广度优先遍历 void BFS(Graph G){ int k; Queue Q; //辅助队列Q Q.InitQueue(); for(int i=0;i<G.vexnum;i++) if(!visited[i]){ //i尚未访问 visited[i]=true; printf("%c ",G.vexs[i]); Q.EnQueue(i); //i入列 while(Q.front!=Q.rear){//队非空,出队 Q.DeQueue(k); //队头元素出列并置为k for(int w=FirstVex(G,k);w>=0;w=NextVex(G,k,w)) if(!visited[w]){ //w为k的尚未访问的邻接顶点 visited[w]=true; printf("%c ",G.vexs[w]); Q.EnQueue(w); } } } } //主函数 void main(){ Graph G; CreateUDN(G); visited = (bool *) malloc(G.vexnum * sizeof(bool)); cout << endl << "深度优先遍历:"; DFSTraverse(G,0); cout << endl << "广度BFS优先遍历:"; BFS(G); cout << endl; }
输入顶点数和弧数:8 9
输入8个顶点.
输入顶点0:a
输入顶点1:b
输入顶点2:c
输入顶点3:d
输入顶点4:e
输入顶点5:f
输入顶点6:g
输入顶点7:h
输入9条弧.
输入弧0:a b 1
输入弧1:b d 1
输入弧2:b e 1
输入弧3:d h 1
输入弧4:e h 1
输入弧5:a c 1
输入弧6:c f 1
输入弧7:c g 1
输入弧8:f g 1
深度优先遍历: a b d h e c f g
广度优先遍历: a b c d e f g h
程序结束.