第一讲 神经网络计算:在tensorflow中用两层神经网络区分鸢尾花类型
1 # _*_ coding: UTF-8 _*_ 2 #利用鸢尾花数据集,实现前向传播、反向传播,可视化loss曲线 3 4 #导入所需模块 5 import tensorflow as tf 6 from sklearn import datasets 7 from matplotlib import pyplot as plt 8 import numpy as np 9 10 #导入数据,分别为输入特征和标签 11 x_data = datasets.load_iris().data 12 y_data = datasets.load_iris().target 13 14 #随机打乱数据(因为原始数据是顺序的,顺序不打乱会影响准确率) 15 #seed: 随机数种子,是一个整数,当设置之后,每次生成的随机数都一样。 16 np.random.seed(116) #使用相同的seed,保证输入特征和标签一一对应。 17 np.random.shuffle(x_data) 18 np.random.seed(116) 19 np.random.shuffle(y_data) 20 tf.random.set_seed(116) 21 22 #将打乱后的数据集分割为训练集和测试集,训练集为前120行,测试集为后30行 23 x_train = x_data[:-30] 24 y_train = y_data[:-30] 25 x_test = x_data[-30:] 26 y_test = y_data[-30:] 27 28 29 #转换x的数据类型,否则后面矩阵相乘时会因数据类型不一致报错 30 x_train = tf.cast(x_train, tf.float32) 31 x_test = tf.cast(x_test, tf.float32) 32 33 # from_tensor_slices函数使输入特征和标签值一一对应。(把数据集分批次,每个批次batch组数据) 34 train_db = tf.data.Dataset.from_tensor_slices((x_train, y_train)).batch(32) 35 test_db = tf.data.Dataset.from_tensor_slices((x_test, y_test)).batch(32) 36 37 #生成神经网络的参数,4个输入特征,故输入层为4个输入节点;因为3分类,故输出层为3个神经元 38 #用tf.Variable()标记参数可训练 39 #使用seed使每次生成的随机数相同。 40 w1 = tf.Variable(tf.random.truncated_normal([4, 3], stddev=0.1, seed=1)) 41 b1 = tf.Variable(tf.random.truncated_normal([3], stddev=0.1, seed=1)) 42 43 lr = 0.1 #学习率为0.1 44 train_loss_results = [] #将每轮的loss记录在此列表中,为后续画loss曲线提供数据 45 test_acc = [] #将每轮的acc记录在此列表中,为后续画acc曲线提供数据 46 epoch = 500 #循环500轮 47 loss_all = 0 #每轮分为4个step, loss_all记录四个step生成的4个loss的和 48 49 #训练部分 50 for epoch in range(epoch): #数据集级别的循环,每个epoch循环一次数据集 51 for step, (x_train, y_train) in enumerate(train_db): #batch级别的循环,每个step循环一个batch 52 with tf.GradientTape() as tape: #with结构记录梯度信息 53 y = tf.matmul(x_train, w1) + b1 #神经网络乘加运算 54 y = tf.nn.softmax(y) #使输出y符合概率分布(此操作后与独热码同量级,可相减求loss) 55 y_ = tf.one_hot(y_train, depth=3) #将标签值转换为独热码格式,方便计算loss和accuracy 56 loss = tf.reduce_mean(tf.square(y_ - y)) #采用均方误差损失函数mse = mean(sum(y-out)^2) 57 loss_all += loss.numpy() #将每个step计算出的loss累加,为后续求loss平均值提供数据,这样计算的loss更准确 58 #计算loss对各个参数的他梯度 59 grads = tape.gradient(loss, [w1, b1]) 60 61 #实现梯度更新w1 = w1 - lr * w1_grad, b = b - lr * b_grad 62 w1.assign_sub(lr * grads[0]) #参数w1自更新 63 b1.assign_sub(lr * grads[1]) #参数b自更新 64 65 #每个epoch,打印loss信息 66 print("Epoch: {}, loss: {}".format(epoch, loss_all/4)) 67 train_loss_results.append(loss_all / 4) #将4个step的loss求平均值记录在此变量中 68 loss_all = 0 #loss_all归零,为记录下一个epoch的loss做准备 69 70 #测试部分 71 #total_correct为预测对的样本个数,total_number为测试的总样本数,将这两个变量都初始化为0 72 total_correct, total_number = 0, 0 73 for x_test, y_test in test_db: 74 #使用更新后的参数进行预测 75 y = tf.matmul(x_test, w1) + b1 76 y = tf.nn.softmax(y) 77 pred = tf.argmax(y, axis=1) #返回y中最大值的索引,即预测的分类 78 #将pred转换为y_test的数据类型 79 pred = tf.cast(pred, dtype=y_test.dtype) 80 #的哦分类正确,则correct=1, 否则为0,将bool型的结果转换为int值 81 correct = tf.cast(tf.equal(pred, y_test), dtype=tf.int32) 82 #将每个batch的correct数加起来 83 correct = tf.reduce_sum(correct) 84 #将所有batch中的correct数加起来 85 total_correct += int(correct) 86 #total_num为测试的总样本数,也就是x_test的行数,shape[0]返回变量的行数 87 total_number += x_test.shape[0] 88 #总的准确率等于total_correct/total_number 89 acc = total_correct / total_number 90 test_acc.append(acc) 91 print("Test_acc:", acc) 92 print("-----------------------------------------") 93 94 95 #绘制loss曲线 96 plt.title("Loss Function Curve") #图片标题 97 plt.xlabel("Epoch") #x轴变量名称 98 plt.ylabel("Loss") #y轴变量名称 99 plt.plot(train_loss_results, label="$Loss$") #逐点画出train_loss_results值并连线,连线图标是Loss 100 plt.legend() #画出曲线图标 101 plt.show() 102 103 104 #绘制Accuracy曲线 105 plt.title("Acc Curve") #图片标题 106 plt.xlabel("Epoch") #x轴变量名称 107 plt.ylabel("Acc") #y轴变量名称 108 plt.plot(test_acc, label="$Accuracy$") #逐点画出test_acc并连线,连线图标是Accuracy 109 plt.legend() 110 plt.show()