用keras 和 tensorflow 构建手写字识别神经网路
#导入数据 import numpy as np import tensorflow as tf import matplotlib.pyplot as plt from keras.datasets import mnist (train_images, train_labels), (test_images, test_labels) = mnist.load_data() print(train_images.shape) print(train_images.dtype) print(train_labels.shape) print(test_images.shape) print(test_labels.shape) #图像转换 train_images = train_images.reshape((60000, 28*28)) train_images = train_images.astype('float32')/255 test_images = test_images.reshape((10000, 28*28)) test_images = test_images.astype('float32')/ 255 #构建网络 from keras import models from keras import layers network = models.Sequential() network.add(layers.Dense(512, activation = 'relu', input_shape = (28*28, ))) network.add(layers.Dense(10, activation = 'softmax')) network.compile(optimizer = 'rmsprop', loss = 'categorical_crossentropy', metrics = ['accuracy']) #准备标签 from keras.utils import to_categorical train_labels = to_categorical(train_labels) test_labels = to_categorical(test_labels) #模型拟合 network.fit(train_images, train_labels, epochs=5, batch_size = 128) #测试模型 test_loss, test_acc = network.evaluate(test_images, test_labels) print('test_acc:', test_acc)
换一种写法(来自Bilibili李宏毅 机器学习课程)
import numpy as np from keras.models import Sequential from keras.layers import Dense, Dropout, Activation from keras.layers import Conv2D, MaxPooling2D, Flatten from keras.optimizers import SGD, Adam from keras.utils import np_utils from keras.datasets import mnist def load_data(): (x_train, y_train), (x_test, y_test) = mnist.load_data() number = 10000 x_train = x_train[0:number] y_train = y_train[0:number] x_train = x_train.reshape(number, 28*28) x_test = x_test.reshape(x_test.shape[0], 28*28) x_train = x_train.astype('float32') x_test = x_test.astype('float32') #convert class vectors to binart vlass matrics y_train = np_utils.to_categorical(y_train, 10) y_test = np_utils.to_categorical(y_test, 10) x_train = x_train x_test = x_test #x_test = np.random.normal(x_test) x_train = x_train /255 x_test = x_test / 255 return (x_train, y_train), (x_test, y_test) (x_train, y_train), (x_test, y_test) = load_data() x_train.shape #(10000, 784) y_train.shape #(10000, 10) x_test.shape #(10000, 784) y_test.shape #(10000, 10) model = Sequential() model.add(Dense(input_dim = 28*28, units = 800, activation = 'relu')) #model.add(Dropout(0.7)) model.add(Dense(units=700, activation = 'relu')) #model.add(Dropout(0.7)) model.add(Dense(units=700, activation = 'relu')) #model.add(Dropout(0.7)) model.add(Dense(units=10, activation = 'softmax')) model.compile(loss = 'categorical_crossentropy', optimizer = "adam", metrics = ['accuracy']) model.fit(x_train, y_train, batch_size = 100, epochs = 20) result = model.evaluate(x_test, y_test) print("Test Acc:", result[1])