猴子排序的期望复杂度推导(雾)

  众所周知,猴子排序打破了排序算法$O(n\log{n})$的桎梏(雾),具体的话,显然最好情况一次成功就是$O(n)$,最坏情况那就$O(+\infty)$了。期望是多少呢?让我来推导一番(逃)。

  首先,设序列长度为$n$,每次打乱序列和检测是否有序为$O(n)$,每次成功的概率为$\frac{1}{n!}$(全排列共$n!$种),失败的概率为$1-\frac{1}{n!}$。我们令$X$为排序成功所需的打乱次数,则$P(X=k)=P_{成功}^{1}×P_{失败}^{k-1}$(乘法原理)。那么猴子排序的期望复杂度就是$O(E(X)*n)$

  X分布列如下表所示——

$X$ $1$ $2$ $3$ $\cdots$ $k$ $\cdots$ $+\infty$
$P(X=k)$ $\frac{1}{n!}$ $\left(1-\frac{1}{n!}\right)^{2-1}×\frac{1}{n!}$ $\left(1-\frac{1}{n!}\right)^{3-1}×\frac{1}{n!}$ $\cdots$ $\left(1-\frac{1}{n!}\right)^{k-1}×\frac{1}{n!}$ $\cdots$ $+\infty$

  有了分布列就来求X的期望吧——

$$E(X)=1×\frac{1}{n!}+2×\left(1-\frac{1}{n!}\right)^{2-1}×\frac{1}{n!}+3×\left(1-\frac{1}{n!}\right)^{3-1}×\frac{1}{n!}+\cdots+k×\left(1-\frac{1}{n!}\right)^{k-1}×\frac{1}{n!}+\cdots$$

$$=\frac{1}{n!}×\left[1×\left(1-\frac{1}{n!}\right)^{0}+2×\left(1-\frac{1}{n!}\right)^{1}+3×\left(1-\frac{1}{n!}\right)^{2}+\cdots+k×\left(1-\frac{1}{n!}\right)^{k-1}+\cdots\right]$$

$$=\frac{1}{n!}×\sum_{i=1}^{\infty}\left[{i×\left(1-\frac{1}{n!}\right)^{i-1}}\right]$$

  嗯……这个级数怎么求和啊?

  写个程序跑一下吧,求和求到二百万应该够了,再往上long double的精度也不资磁了……

#include<stdio.h>
#include<math.h>
int main()
{
    double fac=1;//n!
    for(int n=1;n<=10;n++)
    {
        long double E=0;
        fac*=n;
        for(int i=1;i<=2000000;i++)
        {
            E+=i*pow((fac-1.0)/fac,i-1);
        }
        E/=fac;
        printf("E(X)=%Lf    (n=%d)\n",E,n);        
    }
    return 0;
}

 

  运行结果——

 

  n大于8以后,long double都爆了……忽略它们!(观众:你……)

  于是我们猜想——$E(X)=n!$。

  上网一查,猴子排序复杂度果然是$O(n×n!)$,于是,猜想成立,推导完毕……(博主已被打死)

   

  留坑,等我会求那坨级数求和再来填坑吧(逃)大家别学我

2019年1月21日13:45:56更新

  填坑啦!填坑啦!(这学期高数应该不会挂了嘻嘻)

  那个$E(X)=\frac{1}{n!}×\sum_{i=1}^{\infty}\left[{i×\left(1-\frac{1}{n!}\right)^{i-1}}\right]$是一个以$n$为自变量的幂级数,对$E(X)$逐项积分可得$$\int {E(X)\,dn}=\frac{1}{n!}×\sum_{i=1}^{\infty}\left(1-\frac{1}{n!}\right)^i$$

  又

$$\sum_{i=1}^{\infty}k^i=\frac{1}{1-k}-1       (-1<k<1)$$

  令$k=1-\frac{1}{n!}$

  则$$\int {E(X)\,dn}=\frac{1}{n!}×(n!-1)=1-\frac{1}{n!}$$

  两边再求导可得……可得啥来着?稍等……再次留坑

posted @ 2017-09-24 23:09  wawcac  阅读(4894)  评论(5编辑  收藏  举报