洛谷 P2717 寒假作业

题目背景

zzs和zzy正在被寒假作业折磨,然而他们有答案可以抄啊。

题目描述

他们共有n项寒假作业。zzy给每项寒假作业都定义了一个疲劳值Ai,表示抄这个作业所要花的精力。zzs现在想要知道,有多少组连续的寒假作业的疲劳值的平均值不小于k?

简单地说,给定n个正整数A1,A2,A3,...,An,求出有多少个连续的子序列的平均值不小于k。

输入输出格式

输入格式:

 

第一行两个正整数,n和k。

第二行到第n+1行,每行一个正整数Ai。

 

输出格式:

 

一个非负整数。

 

输入输出样例

输入样例#1:
3 2
1
2
3
输出样例#1:
4

说明

样例解释:共有6个连续的子序列,分别是(1)、(2)、(3)、(1,2)、(2,3)、(1,2,3),平均值分别为1、2、3、1.5、2.5、2,其中平均值不小于k的共有4个。

对于20%的数据,1<=n<=100;

对于50%的数据,1<=n<=5000;

对于100%的数据,1<=n<=100000;

对于100%的数据,1<=Ai<=10000,1<=k<=10000。

 

解题思路

  先来简化一下题意:给定一个数列a[],求有多少个子序列元素平均值大于等于k。

  遍历所有子区间复杂度最小O(n^2),可用前缀和O(1)得到任意区间和。

  想个办法吧,这类题要么用奇奇怪怪的数据结构(可能有这样的数据结构?我不知道),要么推公式。

  那就推公式——

  首先取出一段区间吧,设1<=i<=j<=n,然后这段区间(a[i]~a[j])的平均值为

    (a[i]+a[i+1]+…+a[j]) / (j-i+1)>=k

    分母不太好看,乘到右边吧——

    a[i]+a[i+1]+…+a[j] >= k*(j-i+1)

    a[i]+a[i+1]+…+a[j]>= k+…+k //(j-i+1)个k

    接下来有点关键啦

    a[i]+a[i+1]+…+a[j] - k-…-k>=0

    (a[i]-k) + (a[i+1]-k) +……+ (a[j]-k)>=0//哦?那么整齐,有意思

    那我们另设一个数组b[],使b[i]=a[i]-k吧

    b[i]+b[i+1]+…+b[j]>=0

    哦?b[]的一段区间和大于等于零?

  记得前面想暴力的时候说过用前缀和能O(1)取得任意区间和吗?给b[]套上区间和吧

  设s[i]=b[1]+b[2]+b[3]+…+b[i],特别的,令s[0]=0,那么b[i]+b[i+1]+…+b[j] = s[j]-s[i-1]。

    s[j] - s[i-1]>=0

    移项一下

    s[j]>=s[i-1],哇,快了。

    因为之前定义过i<=j,所以i-1<j,这是什么?

    是的没错!逆序对(大雾,应该叫顺序对的)!

    i-1<j且s[i-1]<=s[j],对s数组求逆序对顺序对即可。

  不会求逆序对的就先掌握这个姿势吧,也挺简单的。

  最后说一下,我不知道为什么把求逆序对的程序类比着改一下,求出来“顺序对”就是对的,反正套上去就AC了,如果有那个dalao知道,能在评论区为本蒟蒻解惑吗?谢谢了。

-------------------------------------------------分割线--------------------------------------------

2019年03月05日20:06:16:当年我找这个解法是从百度第五页找出来的,当年洛谷上这题也只有十多个人AC。今天回来一看,博客园的相似推荐,一个平衡树,其他全是这个解法……感觉自己该抒发点什么,但啥也说不出来……剧场效应导致前浪被拍死在沙滩上?或是一代代OIer的努力降低了查找资料的难度,也极大增加了获奖的难度?(今年NOI免费了,感觉自己错亿)(心里真乱)

源代码

#include<stdio.h>

int n,k;
int a[100010]={0},temp[100010]={0};
long long ans=0;

void merge(int s1,int e1,int s2,int e2)
{
    int s=s1,e=e2,i=s1;
    while(s1<=e1&&s2<=e2)
    {
        if(a[s1]<=a[s2])
        {
            ans+=e2-s2+1;//求逆序对在"a[s1]>a[s2]"里,求顺序对反过来
            temp[i++]=a[s1++];
        }
        else
            temp[i++]=a[s2++];
    }
    while(s1<=e1) temp[i++]=a[s1++];
    while(s2<=e2) temp[i++]=a[s2++];
    for(i=s;i<=e;i++) a[i]=temp[i];
}
void msort(int l,int r)
{
    if(l==r) return;
    int mid=(l+r)>>1;
    msort(l,mid);
    msort(mid+1,r);
    merge(l,mid,mid+1,r);
}

int main()
{
    scanf("%d%d",&n,&k);
    for(int i=1,b;i<=n;i++)
    {
        scanf("%d",&b);
        b-=k;
        a[i]=a[i-1]+b;//输入a[i]时就顺带处理出了s[i],依然存在a[i]里
    }
    msort(0,n);
    printf("%lld",ans);
    return 0;
}

 

posted @ 2017-05-28 00:44  wawcac  阅读(806)  评论(0编辑  收藏  举报