HDU 6623 Minimal Power of Prime

Time limit 1000 ms
Memory limit 65536 kB
OS Windows

中文题意

给一个数n,设将n质因数分解后可以得到

\[n=\prod_{i=1}^{\omega(n)} a_i^{p_i} \]

其中\(\omega(n)\)意思是n的不同质因子个数,\(a_i\)是n的质因子。

要求输出最小的\(p_i\)

题解

看完题解感觉很妙啊——

Let's first factorize \(N\) using prime numbers not larger than \(N^{\frac{1}{5}}\). And let's denote \(M\) as the left part, all the prime factors of \(M\) are larger than \(N^{\frac{1}{5}}\). If \(M=1\) then we are done, otherwise M can only be \(P^2\), \(P^3\), \(P^4\) or \(P^2 \times Q^2\), here \(P\) and \(Q\) are prime numbers.

  1. If \(M^{\frac{1}{4}}\) is an integer, we can know that \(M=P^4\). Update answer using 4 and return.
  2. If \(M^{\frac{1}{3}}\) is an integer, we can know that \(M=P^3\). Update answer using 3 and return.
  3. If \(M^{\frac{1}{2}}\) is an integer, we can know that \(M=P^2\) or \(M=P^2 \times Q^2\). No matter which situation, we can always update answer using 2 and return.
  4. If (1)(2)(3) are false, we can know that answer=1.

Since there are just \(O(\frac{N^{\frac{1}{5}}}{log(N)})\) prime numbers, so the expected running time is \(O(\frac{TN^{\frac{1}{5}}}{log(N)})\).

官方题解导致我一开始没反应过来的地方在于

M can only be \(P^2\), \(P^3\), \(P^4\) or \(P^2 \times Q^2\),

不是only,\(M\)还可以是\(PQRS\)\(P^2QR\)\(PQR\)\(P^3Q\)\(P^2Q\),之类的,而这些的答案都是1,也就是题解里编号4所说的,不是前三种情况。

另外一个问题,如何判断\(\sqrt[4]M\)\(\sqrt[3]M\)\(\sqrt{M}\)是否是整数呢?我们可以求出\(\sqrt[4]M\)\(\sqrt[3]M\)\(\sqrt{M}\)向下取整后的结果,再乘回去,比如,看看是否存在\(\lfloor\sqrt{M}\rfloor^2==M\)

还有,求\(\lfloor\sqrt[3]{M}\rfloor\)时,pow函数精度不太够,用pow(n,1.0/3.0)会WA,要二分法求。下面这段二分法的代码来自这个博客代码里的two函数,要是有整数解就返回整数解,否则返回负一,这倒是挺好。

还有……复杂度那个log哪里来的?和质数分布有关?

源代码

#include<stdio.h>
#include<math.h>
#include<algorithm>
int T;
long long n;
long long cnt=0;
long long prime[10000];
long long ans;
bool vis[10000];

void shai()//取变量名一次回到解放前。还别说,挺方便的,一目了然
{
    for(int i=2;i<=10000;i++)
    {
        if(!vis[i]) prime[++cnt]=i;
        for(int j=1;j<=cnt&&i*prime[j]<=10000;j++)
        {
            vis[i*prime[j]]=1;
            if(i%prime[j]==0)
            break;
        }
    }
}

long long sancigeng(long long a)
{
	long long l=1,r=(long long)pow(n*1.0, 1.0 / 3) + 1,mid;
    while(l<=r){
        mid=(l+r)>>1;
        if(mid*mid*mid==n) return mid;
        else if(mid*mid*mid>n) r=mid-1;
        else l=mid+1;
    }
	return -1;
}

int main()
{
	shai();
	//freopen("test.in","r",stdin);
	scanf("%d",&T);
	while(T--)
	{
		scanf("%lld",&n);
		ans=0x7fffffff;
		int pw,pr;
		for(int i=1;i<=cnt;i++)
		{
			if(n%prime[i]==0)
			{
				pr=prime[i],pw=0;
				while(n%pr==0)
				{
					n/=pr;
					pw++;
				}
				if(pw<ans) ans=pw;
			}
			if(ans==1)
			{
				n=1;
				break;
			}
		}
		if(n==1)
		{
			printf("%lld\n",ans);
			continue;
		}
		long long temp1=sqrt(n),temp2=sqrt(temp1),temp3=sancigeng(n);
		if(temp2*temp2==temp1&&temp1*temp1==n)
		{//algorithm里的max和min不支持long long和int混杂的参数,居然不会隐式类型转换
			ans=std::min(ans,4LL);
		}
		else if(temp3>=0)
		{
			ans=std::min(ans,3LL);
		}
		else if(temp1*temp1==n)
		{
			ans=std::min(ans,2LL);
		}
		else ans=1;
		printf("%lld\n",ans);
	}
	return 0;
}
posted @ 2019-08-02 17:27  wawcac  阅读(331)  评论(0编辑  收藏  举报