bzoj 4816 [Sdoi2017]数字表格

题面

https://www.lydsy.com/JudgeOnline/problem.php?id=4816

题解

显然是莫比乌斯反演

首先得出

然后发现 我们要把d提出去

这样就好做了

跟SDOI2015的一道题类似

因为 $\left \lfloor \frac{n}{p} \right \rfloor \left \lfloor \frac{m}{p} \right \rfloor$只有$(\sqrt n +\sqrt m)$种取值 并且$\prod_{k|p} f[k]^{\mu(\frac{p}{k})}$对于每个p都是固定的

所以我们可以预处理$\prod_{k|p} f[k]^{\mu(\frac{p}{k})}$的前缀积 以及前缀积的逆元 这样可以方便的算出区间的乘积

然后对于每一组询问 我们枚举$(\sqrt n +\sqrt m)$种取值 就可以得出结果

Code

 1 #include<bits/stdc++.h>
 2 using namespace std;
 3 typedef long long ll;
 4 
 5 ll read(){
 6     ll x=0,f=1;char c=getchar();
 7     while(c<'0' || c>'9'){if(c=='-')f=-1;c=getchar();}
 8     while(c>='0' && c<='9'){x=x*10+c-'0';c=getchar();}
 9     return x*f;
10 }
11 
12 const int maxn=1000100;
13 const int mod=1e9+7;
14 int mu[maxn],pr[maxn],cnt;
15 bool isp[maxn];
16 int fib[maxn],g[maxn],G[maxn],invG[maxn];
17 int fpw[maxn][3];
18 
19 int ksm(int a,int b){
20     int ret=1;
21     for(int i=0;i<=30;i++){
22         if(b&1) ret=ret*1ll*a%mod;
23         a=a*1ll*a%mod;
24         b=b>>1;
25         if(b==0) return ret;
26     }
27 }
28 
29 int inv(int a){
30     return ksm(a,mod-2);
31 }
32 
33 int main(){
34 #ifdef LZT
35     freopen("in","r",stdin);
36 #endif
37     mu[1]=1;
38     memset(isp,1,sizeof(isp));
39     for(int i=2;i<=1000000;i++){
40         if(isp[i]){
41             pr[++cnt]=i;
42             mu[i]=-1;
43         }
44         for(int j=1;j<=cnt && i*pr[j]<=1000000;j++){
45             isp[i*pr[j]]=0;
46             if(i%pr[j]==0) break;
47             mu[i*pr[j]]=-mu[i];
48         }
49     }
50     
51     fib[1]=1;
52     for(int i=2;i<=1000000;i++)
53         fib[i]=(fib[i-1]+fib[i-2])%mod;
54     for(int i=1;i<=1000000;i++){
55         fpw[i][0]=inv(fib[i]);
56         fpw[i][1]=1;
57         fpw[i][2]=fib[i];
58     }
59     
60     for(int i=1;i<=1000000;i++){
61         g[i]=1;
62         for(int k=1;k*k<=i;k++){
63             if(i%k) continue;
64             g[i]=g[i]*1ll*fpw[k][mu[i/k]+1]%mod;
65             if(k*k!=i) g[i]=g[i]*1ll*fpw[i/k][mu[k]+1]%mod;
66         }
67     }
68     G[0]=1;
69     for(int i=1;i<=1000000;i++)
70         G[i]=G[i-1]*1ll*g[i]%mod;
71     
72     invG[0]=1;
73     for(int i=1;i<=1000000;i++)
74         invG[i]=inv(G[i]);
75     
76     int tc=read();
77     while(tc--){
78         int n=read(),m=read();
79         int j;
80         int ans=1;
81         for(int i=1;i<=min(n,m);i=j+1){
82             j=min(n/(n/i),m/(m/i));
83             ans=ans*1ll*ksm(G[j]*1ll*invG[i-1]%mod,(n/i)*1ll*(m/i)%(mod-1))%mod;
84         }
85         printf("%d\n",ans);
86     }
87     
88     return 0;
89 }
View Code

Review

推导不成功 我自己没有推出来

枚举取值的写法:

1 int j;
2 for(int i=1;i<=min(n,m);i=j+1){
3     j=min(n/(n/i),m/(m/i));
4     //......
5 }

 

posted @ 2018-07-21 21:22  wawawa8  阅读(155)  评论(0编辑  收藏  举报