test1.py
import tensorflow as tf
import numpy as np
def add_layer(inputs, in_size, out_size, activation_function=None):
with tf.name_scope('layer'):
with tf.name_scope('weights'):
Weights = tf.Variable(tf.random_normal([in_size, out_size]), name='w')
with tf.name_scope('bias'):
biases = tf.Variable(tf.zeros([1, out_size]) + 0.1, name='b')
with tf.name_scope('wx_plus_b'):
Wx_plus_b = tf.matmul(inputs, Weights) + biases
if activation_function is None:
outputs = Wx_plus_b
else:
outputs = activation_function(Wx_plus_b)
return outputs
train_data_x = np.linspace(-1,1,300, dtype=np.float32)[:, np.newaxis]
noise = np.random.normal(0, 0.05, train_data_x.shape).astype(np.float32)
label_y = np.square(train_data_x) - 0.5 + noise
with tf.name_scope('inputs'):
inputer_x = tf.placeholder(tf.float32, [None, 1], name='inputer_x')
inputer_y = tf.placeholder(tf.float32, [None, 1], name='inputer_y')
l1 = add_layer(inputer_x, 1, 10, activation_function=tf.nn.relu)
prediction = add_layer(l1, 10, 1, activation_function=None)
with tf.name_scope('loss'):
loss = tf.reduce_mean(tf.reduce_sum(tf.square(inputer_y-prediction), reduction_indices=[1]))
with tf.name_scope('train_scope'):
train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss)
sess = tf.Session()
init = tf.global_variables_initializer()
sess.run(init)
writer = tf.summary.FileWriter("logs", sess.graph)
for i in range(1000):
sess.run(train_step, feed_dict={inputer_x: train_data_x, inputer_y: label_y})
if i % 50 == 0:
print(sess.run(loss, feed_dict={inputer_x: train_data_x, inputer_y: label_y}))
test2.py
import tensorflow._api.v2.compat.v1 as tf
import numpy as np
tf.disable_v2_behavior()
x_data = np.random.rand(100).astype(np.float32)
y_data = x_data*0.1 + 0.3
Weights = tf.Variable(tf.random_uniform((1,), -1.0, 1.0))
biases = tf.Variable(tf.zeros((1,)))
y = Weights*x_data + biases
loss = tf.reduce_mean(tf.square(y-y_data))
optimizer = tf.train.GradientDescentOptimizer(0.5)
train = optimizer.minimize(loss)
init = tf.initialize_all_variables()
sess = tf.Session()
sess.run(init)
for step in range(201):
sess.run(train)
if step % 20 == 0:
print(step, sess.run(Weights), sess.run(biases), sess.run(loss))
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 25岁的心里话
· 闲置电脑爆改个人服务器(超详细) #公网映射 #Vmware虚拟网络编辑器
· 基于 Docker 搭建 FRP 内网穿透开源项目(很简单哒)
· 零经验选手,Compose 一天开发一款小游戏!
· 一起来玩mcp_server_sqlite,让AI帮你做增删改查!!