09.超参数

digits 手写数据测试

import numpy as np
import matplotlib
import matplotlib.pyplot as plt
from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import accuracy_score
digits = datasets.load_digits()
X = digits.data
X.shape
(1797, 64)
y = digits.target
y.shape
(1797,)
digits.target_names
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
X[0]
array([ 0.,  0.,  5., 13.,  9.,  1.,  0.,  0.,  0.,  0., 13., 15., 10.,
       15.,  5.,  0.,  0.,  3., 15.,  2.,  0., 11.,  8.,  0.,  0.,  4.,
       12.,  0.,  0.,  8.,  8.,  0.,  0.,  5.,  8.,  0.,  0.,  9.,  8.,
        0.,  0.,  4., 11.,  0.,  1., 12.,  7.,  0.,  0.,  2., 14.,  5.,
       10., 12.,  0.,  0.,  0.,  0.,  6., 13., 10.,  0.,  0.,  0.])
y[0]
0
some_digit_image = X[666].reshape(8, 8)
plt.imshow(some_digit_image, cmap=matplotlib.cm.binary)
y[666]

 

 

some_digit_image = X[1000].reshape(8, 8)
plt.imshow(some_digit_image, cmap=matplotlib.cm.binary)
y[1000]

 

 

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=666)
knn_clf = KNeighborsClassifier(3)
knn_clf.fit(X_train, y_train)

y_predict = knn_clf.predict(X_test)
accuracy_score(y_test, y_predict)
0.9888888888888889

寻找最好的k

best_score = 0.0
best_k = -1
for k in range(1,11):
    knn_clf = KNeighborsClassifier(k)
    knn_clf.fit(X_train, y_train)
    y_predict = knn_clf.predict(X_test)
    score= accuracy_score(y_test, y_predict)
    if score > best_score:
        best_k = k
        best_score = score

print("best_k:", best_k)
print("best_score:", best_score)
best_k: 4
best_score: 0.9916666666666667

考虑距离?不考虑距离

best_method = ""
best_score = 0.0
best_k = -1
for method in ["uniform", "distance"]:
    for k in range(1,11):
        knn_clf = KNeighborsClassifier(n_neighbors=k, weights=method)
        knn_clf.fit(X_train, y_train)
        y_predict = knn_clf.predict(X_test)
        score= accuracy_score(y_test, y_predict)
        if score > best_score:
            best_k = k
            best_score = score
            best_method = method

print("best_k:", best_k)
print("best_score:", best_score)
print("best_method:", best_method)
best_k: 4
best_score: 0.9916666666666667
best_method: uniform

探索明可夫斯基距离相应的p

best_p = -1
best_method = ""
best_score = 0.0
best_k = -1

for k in range(1,11):
    for p in range(1, 6):
        knn_clf = KNeighborsClassifier(n_neighbors=k, weights="distance", p=p)
        knn_clf.fit(X_train, y_train)
        
        y_predict = knn_clf.predict(X_test)
        score= accuracy_score(y_test, y_predict)
        if score > best_score:
            best_k = k
            best_score = score
            best_p = p

print("best_k:", best_k)
print("best_score:", best_score)
print("best_p:", p)
best_k: 3
best_score: 0.9888888888888889
best_p: 5

param_grid = [
    {
        "weights":["uniform"],
        "n_neighbors":[i for i in range(1,11)]
    },
    {
        "weights":["distance"],
        "n_neighbors":[i for i in range(1,11)],
        "p":[i for i in range(1,6)]
    }
]

knn_clf = KNeighborsClassifier()
from sklearn.model_selection import GridSearchCV
%%time
grid_search = GridSearchCV(knn_clf, param_grid)
Wall time: 0 ns
%%time
grid_search.fit(X_train, y_train)
Wall time: 1min 1s
GridSearchCV(cv=None, error_score=nan,
             estimator=KNeighborsClassifier(algorithm='auto', leaf_size=30,
                                            metric='minkowski',
                                            metric_params=None, n_jobs=None,
                                            n_neighbors=5, p=2,
                                            weights='uniform'),
             iid='deprecated', n_jobs=None,
             param_grid=[{'n_neighbors': [1, 2, 3, 4, 5, 6, 7, 8, 9, 10],
                          'weights': ['uniform']},
                         {'n_neighbors': [1, 2, 3, 4, 5, 6, 7, 8, 9, 10],
                          'p': [1, 2, 3, 4, 5], 'weights': ['distance']}],
             pre_dispatch='2*n_jobs', refit=True, return_train_score=False,
             scoring=None, verbose=0)

 

grid_search.best_estimator_
KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski',
                     metric_params=None, n_jobs=None, n_neighbors=1, p=2,
                     weights='uniform')
knn_clf = grid_search.best_estimator_
y_predict = knn_clf.predict(X_test)
print(accuracy_score(y_test, y_predict))
0.9833333333333333
knn_clf = KNeighborsClassifier()
grid_search = GridSearchCV(knn_clf, param_grid, n_jobs=-1, verbose=2)
grid_search.fit(X_train, y_train)
knn_clf = grid_search.best_estimator_
y_predict = knn_clf.predict(X_test)
print(accuracy_score(y_test, y_predict))
Fitting 5 folds for each of 60 candidates, totalling 300 fits
 
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[Parallel(n_jobs=-1)]: Done  25 tasks      | elapsed:    1.4s
[Parallel(n_jobs=-1)]: Done 244 tasks      | elapsed:    9.9s
[Parallel(n_jobs=-1)]: Done 285 out of 300 | elapsed:   11.6s remaining:    0.5s
 
0.9833333333333333
 
[Parallel(n_jobs=-1)]: Done 300 out of 300 | elapsed:   12.2s finished

 

grid_search.best_estimator_
KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski',
                     metric_params=None, n_jobs=None, n_neighbors=1, p=2,
                     weights='uniform')

 

posted @ 2020-11-25 22:10  止一  阅读(92)  评论(0编辑  收藏  举报